1. 指数平滑法用excel
怎么用Eviews做一个二次指数平滑法的预测? eviews里做指数平滑步骤如下:
1、用命令方式:smooth y 得到一个对话框,选择你要进行的指数平滑的形式, 2、然后在alpha,beta,gamma三个选项中分别填入平滑参数,alpha一般取大于0.5的值(因为在预测中近期占得的权重较大),beta,gamma一般取0,点击OK。
3、得到的预测结果中最下面有mean和trend项,有如下关系F(t)=trend+mean*t,令t=1即可得到下一年的预测值F(1),以此类推。 注意事项:这种方法的最大的难处在于如何确定alpha的数值,但有一个标准就是选择不同的值使得残差平方和Sum of Squared Residuals达到最小即可。
你可以用二分法进行试算以确定较为准确的值。
2. 指数平滑法用下列哪一指标的大小
St--时间t的平滑值;
yt--时间t的实际值;
St-1--时间t-1的平滑值;
a--平滑常数,其取值范围为[0,1];
由该公式可知:
1.St是yt和 St-1的加权算数平均数,随着a取值的大小变化,决定yt和 St-1对St的影响程度,当a取1时,St= yt;当a取0时,St= St-1。
2.St具有逐期追溯性质,可探源至St-t+1为止,包括全部数据。其过程中,平滑常数以指数形式递减,故称之为指数平滑法。指数平滑常数取值至关重要。平滑常数决定了平滑水平以及对预测值与实际结果之间差异的响应速度。平滑常数a越接近于1,远期实际值对本期平滑值的下降越迅速;平滑常数a越接近于 0,远期实际值对本期平滑值影响程度的下降越缓慢。由此,当时间数列相对平稳时,可取较小的a;当时间数列波动较大时,应取较大的a,以不忽略远期实际值的影响。生产预测中,平滑常数的值取决于产品本身和管理者对良好响应率内涵的理解。
3.尽管St包含有全期数据的影响,但实际计算时,仅需要两个数值,即yt和 St-1,再加上一个常数a,这就使指数滑动平均具有逐期递推性质,从而给预测带来了极大的方便。
4.根据公式S1=ay1+(1-a)S0,当欲用指数平滑法时才开始收集数据,则不存在y0。无从产生S0,自然无法据指数平滑公式求出S1,指数平滑法定义S1为初始值。初始值的确定也是指数平滑过程的一个重要条件。
如果能够找到y1以前的历史资料,那么,初始值S1的确定是不成问题的。数据较少时可用全期平均、移动平均法;数据较多时,可用最小二乘法。但不能使用指数平滑法本身确定初始值,因为数据必会枯竭。
如果仅有从y1开始的数据,那么确定初始值的方法有:
1)取S1等于y1;
2)待积累若干数据后,取S1等于前面若干数据的简单算术平均数,如:S1=(y1+ y2+y3)/3等等。
3. 指数平滑法用下列哪一指标的大小来反映对时间序列资料
时间序列分析常用的方法:趋势拟合法和平滑法。
1、趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的方法。包括线性拟合和非线性拟合。
线性拟合的使用场合为长期趋势呈现出线形特征的场合。参数估计方法为最小二乘估计。
2、平滑法是进行趋势分析和预测时常用的一种方法。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律 。
4. 指数平滑法用excel怎么弄
1、首先在Excel表格中输入年份与相关数据,需要进行平滑指数的操作计算出预测数据。
2、预测值是从第二期开始,第二期的预测值=第一期的实际值,所以c3=b2。
3、设置一个平滑系数,例如设置为“0.3”,在C4单元格中输入公式:=$F$2*B3+(1-$F$2)*C3。从第三期开始,每一期的预测值=平滑系数*上一期的实际值+(1-平滑系数)*上一期的预测值。
4、点击回车并下拉公式即可得出预测的数值结果
5. 指数平滑法用于预测
指数平滑法是生产预测中常用的一种方法。所有预测方法中,简单的全期平均法是对时间数列的过去数据一个不漏地全部加以同等利用;移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。下面将详细介绍指数平滑法这种方法。指数平滑法的基本公式是:St=ayt+(1-a)St-1式中,St--时间t的平滑值;yt--时间t的实际值;St-1--时间t-1的实际值;a--平滑常数,其取值范围为[0,1];由该公式可知:
1.St是yt和St-1的加权算数平均数,随着a取值的大小变化,决定yt和St-1对St的影响程度,当a取1时,St=yt;当a取0时,St=St-1。
2.St具有逐期追溯性质,可探源至St-t+1为止,包括全部数据。其过程中,平滑常数以指数形式递减,故称之为指数平滑法。指数平滑常数取值至关重要。平滑常数决定了平滑水平以及对预测值与实际结果之间差异的响应速度。
平滑常数a越接近于1,远期实际值对本期平滑值的下降越迅速;平滑常数a越接近于0,远期实际值对本期平滑值影响程度的下降越缓慢。
由此,当时间数列相对平稳时,可取较大的a;当时间数列波动较大时,应取较小的a,以不忽略远期实际值的影响。
生产预测中,平滑常数的值取决于产品本身和管理者对良好响应率内涵的理解。
3.尽管St包含有全期数据的影响,但实际计算时,仅需要两个数值,即yt和St-1,再加上一个常数a,这就使指数滑动平均具逐期递推性质,从而给预测带来了极大的方便。4.根据公式S1=ay1+(1-a)S0,当欲用指数平滑法时才开始收集数据,则不存在y0。无从产生S0,自然无法据指数平滑公式求出S1,指数平滑法定义S1为初始值。
初始值的确定也是指数平滑过程的一个重要条件。
如果能够找到y1以前的历史资料,那么,初始值S1的确定是不成问题的。
数据较少时可用全期平均、移动平均法;数据较多时,可用最小二乘法。但不能使用指数平滑法本身确定初始值,因为数据必会枯竭。
如果仅有从y1开始的数据,那么确定初始值的方法有:
1)取S1等于y1;
2)待积累若干数据后,取S1等于前面若干数据的简单算术平均数,如:S1=(y1+y2+y3)/3等等。
6. 指数平滑法用来反映对时间序列资料修匀程度的是
指数平滑法(Exponential Smoothing,ES),是生产预测中常用的一种方法,也用于中短期经济发展趋势预测。由布朗(Robert G..Brown)提出,布朗认为时间序列的态势具有稳定性或规则性,所以时间序列可被合理地顺势推延;他认为最近的过去态势,在某种程度上会持续的未来,所以将较大的权数放在最近的资料
7. 指数平滑法用来反映对时间序列资料修均程度的是
时间趋势产量预报是作物产量气象预报中很重要的一部分。本文采用一种递推型模型——指数平滑法进行时间趋势产量的预报。它对近期样本给予较大权重,从而可以较好地拟合产量序列的历史演变,并具有一定的外推功能。
大量产量资料的应用试验表明,我国多数地区使用该方法时可将初始时刻的产量实测值取为初始平滑值;若产量序列变化较平稳,则加权系数取值较小,样本可直接进行指数平滑,反之,加权系数变大,样本亦需进行适当的预处理。
通过与其它常用方法的比较,认为该方法可作为一种作物趋势产量模拟及短期预测的方法加以应用。
- 相关评论
- 我要评论
-