Exce表格网

excel合并动态字段值(excel表格合并的单元格中如何设置段落)

来源:www.0djx.com  时间:2023-02-18 05:10   点击:86  编辑:表格网  手机版

1. excel表格合并的单元格中如何设置段落

在同一个单元格内将内容分段快捷键是Alt+回车键

1、电脑打开Excel表格。

2、打开Excel后,将几个单元格合并。

3、将单元格合并后,在单元格内输入文字,然后按Alt+回车键就可以在单元格内另起一行将文字分段了。

4、文字另起一行后,就可以另一段的文字了。

2. exelce表格合并字段

选中 A列 数据区域。

点击 【数据 -> 分类汇总 -> 确定】

.2从 A2 单元格开始向下选中A列数据区域。

把 标题除外(A1),仅选中数据内容(A2 及以下)按 Ctrl + G 键,调出定位对话框,点击按钮: 定位条件, 在对话框中选择 空值确定 后,点击 开始 -> 合并后居中,合并空值单元格。

.3选中B列数据。

点击 数据 -> 分类汇总,在 “分类汇总” 对话框中,点击 “全部删除”。

3. 合并字段函数

合并的时候选择删除重复字段即可

4. element表格合并动态行数

给定至少两个随机变量X,Y,…, 它们的联合概率分布(Joint probability distribution)指的是每一个随机变量的值落入特定范围或者离散点集合内的概率. 对于只有两个随机变量的情况, 称为二元分布(bivariate distribution).

联合概率分布可以使用联合累计分布函数(joint cumulative distribution function), 连续随机变量的联合概率密度函数(joint probability density function)或者离散变量的联合概率质量函数(joint probability mass function)来描述. 由此又衍生出两个概念: 边缘分布(marginal distribution)和条件概率分布(conditional probability distribution).

二. 离散变量的联合概率质量函数公式

公式:

是给定X=xX=x的Y=yY=y的条件概率.

而且有:

如果XX和YY相互独立:

如果XX和YY条件不独立(conditionally dependent):

P(X=x and Y=y)=P(X=x)⋅P(Y=y|X=x)P(X=x and Y=y)=P(X=x)·P(Y=y|X=x)

也可以使用联合累计分布函数的差分来计算:

联合累计分布函数定义是:

所以F(x,y)F(x,y)的导数(差分)就是P(X=x and Y=y)P(X=x and Y=y)

三. 使用Matlab计算离散2D联合分布

参考: Calculating a 2D joint probability distribution

离散2D联合分布可用于计算两张图片的互信息MI.

0. 定义两个离散的随机变量.

有N个点分布在边长为1的正方形区域内. 把正方形分为K1*K2的小矩形. 统计每个小矩形内的点的个数.

% Data

N = 1e5; % number of points

xy = rand(N, 2); % coordinates of points

xy(randi(2*N, 100, 1)) = 0; % add some points on one side

xy(randi(2*N, 100, 1)) = 1; % add some points on the other side

xy(randi(N, 100, 1), :) = 0; % add some points on one corner

xy(randi(N, 100, 1), :) = 1; % add some points on one corner

inds= unique(randi(N, 100, 1));

xy(inds, :) = repmat([0 1], numel(inds), 1); % add some points on one corner

inds= unique(randi(N, 100, 1));

xy(inds, :) = repmat([1 0], numel(inds), 1); % add some points on one corner

% Intervals for rectangles

K1 = ceil(sqrt(N/5)); % number of intervals along x

K2 = K1; % number of intervals along y

int_x = [0:(1 / K1):1]; % intervals along x

int_y = [0:(1 / K2):1]; % intervals along y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1. 从定义出发, 使用for循环:

tic

count_cells = zeros(K1, K2);

for k1 = 1:K1

inds1 = (xy(:, 1) >= int_x(k1)) & (xy(:, 1) < int_x(k1 + 1));

for k2 = 1:K2

inds2 = (xy(:, 2) >= int_y(k2)) & (xy(:, 2) < int_y(k2 + 1));

count_cells(k1, k2) = sum(inds1 .* inds2);% 布尔相乘得到交集点的个数

end

end

toc

% Elapsed time is 39.357691 seconds.

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

可见使用两重循环的计算时间非常长.

2. 使用hist3函数

N=hist3(X,'Edges',edges)是matlab中专门计算二元分布的函数.

edges是包含两个递增array的cell. 第一维分组edge1是edges{1}, 第二维分组edge2是edges{2}.

也就是:

edges1(i)<=X(k,1)<edges1(i+1)edges1(i)<=X(k,1)<edges1(i+1)

edges2(j)<=X(k,2)<edges2(j+1)edges2(j)<=X(k,2)<edges2(j+1)

正好落在edges1(i+1)edges1(i+1)或者edges2(j+1)edges2(j+1)上的点的个数放在N的最后一行或者最后一列.

hist3不统计edges范围外的部分.

N是一个二维矩阵, 统计的落到每个单元格内的点的个数.

tic

count_cells_hist = hist3(xy, 'Edges', {int_x int_y});

% 注意hist3得到的矩阵是K1+1*K2+1的, 所以把最后一行和一列去掉.

% 最后一行或一列表示的是 X(k,1)= edges{1}(end)或者X(k,2) = edges{2}(end)的点数

count_cells_hist(end, :) = []; count_cells_hist(:, end) = [];

toc

all(count_cells(:) == count_cells_hist(:))

% Elapsed time is 0.017995 seconds.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

显然比用两重for循环快多了.

3. 使用矩阵二元操作bsxfun

C = bsxfun(fun,A,B)对A和B做逐个元素的二元操作, 操作由函数 fun指定.

返回的C中, 1表示满足条件, 0 表示不满足条件. 可用的fun有:

fun operation

@plus Plus

@minus Minus

@timesArray multiply

@rdivideRight array divide

@ldivideLeft array divide

@power Array power

@max Binary maximum

@min Binary minimum

@rem Remainder after division

@mod Modulus after division

@atan2 Four-quadrant inverse tangent; result in radians

@atan2d Four-quadrant inverse tangent; result in degrees

@hypot Square root of sum of squares

@eq Equal

@neNot equal

@ltLess than

@le Less than or equal to

@gt Greater than

@ge Greater than or equal to

@andElement-wise logical AND

@orElement-wise logical OR

@xorLogical exclusive OR

使用bsxfun的matlab代码:

%% bsxfun

tic

xcomps = single(bsxfun(@ge,xy(:,1),int_x));% 10000*143矩阵

ycomps = single(bsxfun(@ge,xy(:,2),int_y));% 10000*143矩阵

% 相当于求CDF

count_again = xcomps.' * ycomps; %' 143x143 = 143x1e5 * 1e5x143

% 差分后是142*142

count_again_fix = diff(diff(count_again')');

toc

% Elapsed time is 0.178316 seconds.

all(count_cells_hist(:) == count_again_fix(:))

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

bsxfun稍逊于hist3, 可以针对没有statistics toolbox的情况下使用.

4. 使用accumarray

A= accumarray(subs,val)使用subs的元素值作为索引. subs和val是一一对应的. 将subs中相同值对应的val值累加. 也就是说, subs中元素的位置决定了val哪些元素相加, subs中元素的值决定了累加值在输出中的位置. 看matlab help中示例:

Example 1

Create a 5-by-1 vector and sum values for repeated 1-D subscripts:

val = 101:105;

subs = [1; 2; 4; 2; 4];

A = accumarray(subs, val)

A =

101 % A(1) = val(1) = 101

206 % A(2) = val(2)+val(4) = 102+104 = 206

0 % A(3) = 0

208 % A(4) = val(3)+val(5) = 103+105 = 208

subs中元素值必须是正整数值. 所以在表示分组时, 可以把[0,1]区间变为[1,K1]区间. matlab代码:

%%%%% 第五种方法Using accumarray

% Another approach is to use accumarray to make the joint histogram after we bin the data.

% Starting with int_x, int_y, K1, xy, etc.:

tic

% take (0,1) data onto [1 K1], following A.Dondas approach for easy comparison

ii = floor(xy(:,1)*(K1-eps))+1;

ii(ii<1) = 1; ii(ii>K1) = K1;

jj = floor(xy(:,2)*(K1-eps))+1;

jj(jj<1) = 1; jj(jj>K1) = K1;

% create the histogram and normalize

H = accumarray([ii jj],ones(1,size(ii,1)));

PDF = H / size(xy,1); % for probabilities summing to 1

toc

% Elapsed time is 0.006356 seconds.

all(count_cells_hist(:) == count_again_fix(:))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ms级别! 真是快!

5. 使用mex编译

mex混合编程参考: 在Matlab中使用mex函数进行C/C++混合编程

#include "mex.h"

// http://stackoverflow.com/questions/19745917/calculating-a-2d-joint-probability-distribution

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

unsigned long int hh, ctrl; /* counters */

unsigned long int N, m, n; /* size of matrices */

unsigned long int *xy; /* data */

unsigned long int *count_cells; /* joint frequencies */

/* matrices needed */

mxArray *count_cellsArray;

/* Now we need to get the data */

if (nrhs == 3) {

xy = (unsigned long int*) mxGetData(prhs[0]);

N = (unsigned long int) mxGetM(prhs[0]);//取矩阵的行数

m = (unsigned long int) mxGetScalar(prhs[1]);

n = (unsigned long int) mxGetScalar(prhs[2]);

}

/* Then build the matrices for the output */

count_cellsArray = mxCreateNumericMatrix(m + 1, n + 1, mxUINT32_CLASS, mxREAL);

count_cells = mxGetData(count_cellsArray);

plhs[0] = count_cellsArray;

hh = 0; /* counter for elements of xy */

/* for all points from 1 to N */

for(hh=0; hh<N; hh++) {

ctrl = (m + 1) * xy[N + hh] + xy[hh];

count_cells[ctrl] = count_cells[ctrl] + 1;

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

将代码保存为: joint_dist_points_2D.c. 在matlab cmd中运行:

mex joint_dist_points_2D.c

1

1

生成joint_dist_points_2D.mexw32文件.

matlab调用代码:

% Use mex function

tic

xy2 = uint32(floor(xy ./ repmat([1 / K1, 1 / K2], N, 1)));

count_cells = joint_dist_points_2D(xy2, uint32(K1), uint32(K2));

toc

% Elapsed time is 0.011696 seconds.

1

2

3

4

5

6

1

2

3

4

5

6

也是非常快的.

5. fastreport动态合并单元格

frp格式的文档是一种比较少见的电子文档,,它是由FastReport报表控件生成的报表文件。打开frp的软件主要有VewRpt、ONEView Demo、FRP格式阅读器。

推荐使用ONEView Demo,这是一款非常实用的frp文件阅读器,使用这款软件能够非常快速的查看和打印frp文件,并且操作方法十分的简单。

ONEView Demo功能如下:

1、ONEView支持查看和打印HTML,XHTML,RTF,图像文件(例如BMP,JPEG,EMF 和WMF)

2、ONEView支持查看和常规的Delphi报表工具文档,例如RAF(ReportBuilder),QRP QuickReport),FRP(FastReport),NDR(Rave)和ACE(AceReporter)

3、frp文件阅读器支持以上格式的文档的转换(或者保存)

4、frp文件阅读器转换格式多达20种,包含PDF,RTF,HTML,XHTML,EXCEL,TEXT,CSV,Quattro ro,LOTUS 1-2-3,DIF,SYLK,TIFF,PNG,SVG(基于XML的矢量图像文档)和其他格式.

用ONEView转换frp文件步骤如下:

1.打开ONEView

2.选择“file”菜单下的“open”

3.找到需要打开的文件

4.点击打开

5.点开"file"菜单,选择“另存为”,在文件类型下拉列表中选择.xls文件保存,装换完成。

6. 动态合并表格

用PS软件时间轴功能可以合并两张动态图。打开两张动态图,打开时间轴,拷贝其中一张动态图所有帧,再打开另外一张动态图,将拷贝的帧粘贴在该动态图帧之后,保存为gif图片就可以了!

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片