Excel表格网

excel统计数据库(数据库的统计)

来源:www.0djx.com  时间:2022-10-16 00:50   点击:232  编辑:表格网  手机版

1. 数据库的统计

Gdb数据库是利用大数据平台统一将数据进行记录保存,然后统一进行研判的

2. 数据库的统计信息

在Oracle数据库里,通常有两种方法可以用来收集统计信息:一种是使用ANALYZE命令;另一种是使用DBMS_STATS包。表、索引、列的统计信息和数据字典统计信息用ANALYZE命令或者DBMS_STATS包收集均可,但系统统计信息和系统内部对象统计信息只能使用DBMS_STATS包来收集。

3. 数据库的统计函数

工具/原料

Microsoft Office EXCEL 2007

方法/步骤

1、COUNT函数:统计单元格包含数值数据的单元格个数。公式:

COUNT(value1,value2,value3,.....)注意项:统计的是数值,如果是文本字符,则不会统计进去。实例:统计以下B3:B11,C3:C11中包含有数值的单元格个数。

2、COUNTA函数:统计列表中所有非空值单元格的数量。公式:COUNTA(number1,number2,...)注意项:单元格不管是数字,还是文本,只要非空值,都将被统计。实例:统计以下B3:B11,C3:C11中的非空值单元格。

3、COUNTBLANK函数:统计列表中所有为空白单元格的数量。公式:COUNTBLANK(range),range:统计的区域,可以为数组。注意:range可为某列,也可为某行,可以为数组区域。但若是0值,将不会被统计进去。实例:统计以下B3:B11,C3:C11中的所有空白单元格。

4、COUNTIF函数:统计满足特定条件的单元格个数。公式:COUNTIF(range,criteria),range:统计的区域,criteria:满足的条件。实例:统计以下语文大于等于90的人数、文小于90的人数。

5、COUNTIFS函数:本函数是COUNTIF的扩展,用法与COUNTIF类似,但COUNTIF的条件只有一个,而COUNTIFS可以实现二个及以上的条件,用途更加广泛。公式:COUNTIFS(range1, criteria1,range2, criteria2…)实例:统计下表中“语文和数学都大于等于90的人数”、“语文和数学都小于90的人数”。

4. 数据库的统计推论

descriptive statistics是描述性统计,就是描述样本的统计特征,并不深入了解其内部规律,比如求平均数。 inferential statistics是推论统计,研究如何根据样本数据去推断总体数量特征的方法。它是在对样本数据进行描述的基础上,对统计总体的未知数量特征做出以概率形式表述的推断。更概括地说,是在一段有限的时间内,通过对一个随机过程的观察来进行推断的。

5. 数据库的统计功能应用

这类软件主要用于更专业的数据分析挖掘工作,尤其是在银行、金融、保险业。

SPSS、SAS都是用于统计分析,围绕统计学知识的一些基本应用,包括描述统计,方差分析,因子分析,主成分分析,基本的回归,分布的检验等等。SPSS用于市场研究较多,SAS银行金融和医学统计较多,有一些难度。

R语言像是综合性较强的一类数据分析工具,集统计分析、数据挖掘,数据可视化。

展开来,讲讲数据分析~

这些数据分析工具的使用还是看需求,每个企业应用的选择和方式都不同。数据分析的概念很广,站在IT的角度,实际应用中可以把数据分析工具分成两个维度:

第一维度:数据存储层——数据报表层——数据分析层——数据展现层

第二维度:用户级——部门级——企业级——BI级

1、数据存储层

数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。

Access2003、Access07等

,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力;

SQL Server2005或更高版本

,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了;

DB2,Oracle数据库都是大型数据库

,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;

BI级别

,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现,BI级别的数据仓库结合BI产品也是近几年的大趋势。

2、报表/BI层

企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。过去传统报表大多解决的是展现问题,如今像帆软报表FineReport也会和其他应用交叉,做数据分析报表,通过接口开放功能、填报、决策报表功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。

Tableau、Qlikview、FineBI这类BI工具,可分在报表层也可分为数据展现层,涵盖了数据整合、数据分析和数据展现。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,可常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份——

商业智能

,所以在大数据处理方面的能力更胜一筹。

3、数据分析层

这个层其实有很多分析工具,当然我们最常用的就是Excel。

Excel软件

,首先版本越高越好用这是肯定的;当然对excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;

SPSS软件

:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件;

SAS软件

:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!

JMP分析

:SAS的一个分析分支

XLstat

:Excel的插件,可以完成大部分SPSS统计分析功能

4、表现层

表现层也叫数据可视化,以上每种工具都几乎提供了一点展现功能。FineBI和Tableau的可视化功能上文有提过。其实,近年来Excel的可视化越来越棒,配上一些插件,使用感更佳。

PPT:

办公常用,用来写数据分析报告;

Xmind&百度脑图:

梳理流程,帮助思考分析,展现数据分析的层次;

Xcelsius软件:

Dashboard制作和数据可视化报表工具,可以直接读取数据库,在Excel里建模,互联网展现,最大特色还是可以在PPT中实现动态报表。

最后,需要说明的是,这样的分类并不是区分软件,只是想说明软件的应用。有时候我们把数据库就用来进行报表分析,有时候报表就是分析,有时候分析就是展现;当然有时候展现就是分析,分析也是报表,报表就是数据存储了!

6. 数据库的统计查询结论与心得

可以从国家统计局官网查国家统计局的数据。

1、“最新发布”——获取最新统计数据的首选

  国家统计局官网是国家统计局发布统计信息的主要渠道之一,每逢月、季、年度等统计信息发布日,在我局官网“最新发布”栏目,都会发布新闻稿。它与“国家统计信息发布日程表”一致,是公众获取最新统计数据的首选。

2、国家统计数据库——快速查询统计指标及系列数据的渠道

  国家统计数据库包括历年月、季、年度数据,可通过数据库“搜索”、选择“指标”等方式,方便快捷地查询到历年、分地区、分专业的数据。是公众快速查阅统计指标及系列数据的最便捷方法。

  3、“统计出版物”——网上查阅年鉴类书籍

  “统计出版物”栏目  提供有《中国统计年鉴》、《统计公报》、《国际统计年鉴》、《金砖国家联合统计手册》四类图书的电子版,方便公众查阅。

7. 数据库的统计信息有什么用

analyze释义:

vt. 对...进行分析;对(某人)进行心理分析;鉴定和测量...的化学成分;[语法]解析(句子)(同analyse)

收集统计信息

在Oracle数据库里,通常有两种方法可以用来收集统计信息:一种是使用ANALYZE命令;另一种是使用DBMS_STATS包。表、索引、列的统计信息和数据字典统计信息用ANALYZE命令或者DBMS_STATS包收集均可,但系统统计信息和系统内部对象统计信息只能使用DBMS_STATS包来收集。

8. 数据库的统计用户人数怎么查询

具体查询语句是 select 院系,count(distinct user_id)from 库表 group by 院系;用user_id假设为每一个用户的独立id,每一个id代表一个人,查询整个学院全体人数,加入distinct防止用户id重复,然后对院系分组,出来的结果就是每个学院分组之后的人数。

9. 数据库的统计更新

财务系统升级,一般不会超过一个星期。财务系统一般具有多币种的处理能力,可由用户定义账本位币,并可以用任何币种为单位进行统计分析。财务系统为用户提供符合我国财务的多种格式的凭证和账簿,包括:收款凭证,付款凭证,转账凭证,数量凭证,外币凭证;银行、现金日记账,数量账,往来账、多栏账,总账,明细账等。财务系统具有功能丰富,灵活性,通用性强,操作简便,严密可靠的特点。它是财务管理的一个核心部分。为企业的库存,采购,销售,生产等提供指导,为企业领导的决策提供及时、准确的财务信息。

10. 数据库的统计分析

分析数据有两种,

1列表法

将实验数据按一定规律用列表方式表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。

2作图法

作图法可以最醒目地表达物理量间的变化关系。从图线上还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(内插法),或在一定条件下从图线的延伸部分读到测量范围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到,若用半对数坐标纸,以lgR为纵轴,以1/T为横轴画图,则为一条直线。

这个要看你分析什么数据。

分析大数据,R语言和Linux系统比较有帮助,运用到的方法原理可以翻翻大学的统计学,不需要完全理解,重在应用。

分析简单数据,Excel就可以了。Excel本意就是智能,功能很强,容易上手。我没有见过有人说自己精通Excel的,最多是熟悉Excel。Excel的函数可以帮助你处理大部分数据。

一、掌握基础、更新知识。

基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识),多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家深有感触的。

数据库查询—sql

数据分析师在计算机的层面的技能要求较低,主要是会sql,因为这里解决一个数据提取的问题。有机会可以去逛逛一些专业的数据论坛,学习一些sql技巧、新的函数,对你工作效率的提高是很有帮助的。

统计知识与数据挖掘

你要掌握基础的、成熟的数据建模方法、数据挖掘方法。例如:多元统计:回归分析、因子分析、离散等,数据挖掘中的:决策树、聚类、关联规则、神经网络等。但是还是应该关注一些博客、论坛中大家对于最新方法的介绍,或者是对老方法的新运用,不断更新自己知识,才能跟上时代,也许你工作中根本不会用到,但是未来呢?

行业知识

如果数据不结合具体的行业、业务知识,数据就是一堆数字,不代表任何东西。是冷冰冰,是不会产生任何价值的,数据驱动营销、提高科学决策一切都是空的。

一名数据分析师,一定要对所在行业知识、业务知识有深入的了解。例如:看到某个数据,你首先必须要知道,这个数据的统计口径是什么?是如何取出来的?这个数据在这个行业,在相应的业务是在哪个环节是产生的?数值的代表业务发生了什么(背景是什么)?对于a部门来说,本月新会员有10万,10万好还是不好呢?先问问上面的这个问题:

对于a部门,

1、新会员的统计口径是什么。第一次在使用a部门的产品的会员?还是在站在公司角度上说,第一次在公司发展业务接触的会员?

2、是如何统计出来的。a:时间;是通过创建时间,还是业务完成时间。b:业务场景。是只要与业务发接触,例如下了单,还是要业务完成后,到成功支付。

3、这个数据是在哪个环节统计出来。在注册环节,在下单环节,在成功支付环节。

4、这个数据代表着什么。10万高吗?与历史相同比较?是否做了营销活动?这个行业处理行业生命同期哪个阶段?

在前面二点,更多要求你能按业务逻辑,来进行数据的提取(更多是写sql代码从数据库取出数据)。后面二点,更重要是对业务了解,更行业知识了解,你才能进行相应的数据解读,才能让数据产生真正的价值,不是吗?

对于新进入数据行业或者刚进入数据行业的朋友来说:

行业知识都重要,也许你看到很多的数据行业的同仁,在微博或者写文章说,数据分析思想、行业知识、业务知识很重要。我非常同意。因为作为数据分析师,在发表任何观点的时候,都不要忘记你居于的背景是什么?

但大家一定不要忘记了一些基本的技术,不要把基础去忘记了,如果一名数据分析师不会写sql,那麻烦就大了。哈哈。。你只有把数据先取对了,才能正确的分析,否则一切都是错误了,甚至会导致致命的结论。新同学,还是好好花时间把基础技能学好。因为基础技能你可以在短期内快速提高,但是在行业、业务知识的是一点一滴的积累起来的,有时候是急不来的,这更需要花时间慢慢去沉淀下来。

不要过于追求很高级、高深的统计方法,我提倡有空还是要多去学习基本的统计学知识,从而提高工作效率,达到事半功倍。以我经验来说,我负责任告诉新进的同学,永远不要忘记基本知识、基本技能的学习。

二、要有三心。

1、细心。

2、耐心。

3、静心。

数据分析师其实是一个细活,特别是在前文提到的例子中的前面二点。而且在数据分析过程中,是一个不断循环迭代的过程,所以一定在耐心,不怕麻烦,能静下心来不断去修改自己的分析思路。

三、形成自己结构化的思维。

数据分析师一定要严谨。而严谨一定要很强的结构化思维,如何提高结构化思维,也许只需要工作队中不断的实践。但是我推荐你用mindmanagement,首先把你的整个思路整理出来,然后根据分析不断深入、得到的信息不断增加的情况下去完善你的结构,慢慢你会形成一套自己的思想。当然有空的时候去看看《麦肯锡思维》、结构化逻辑思维训练的书也不错。在我以为多看看你身边更资深同事的报告,多问问他们是怎么去考虑这个问题的,别人的思想是怎么样的?他是怎么构建整个分析体系的。

四、业务、行业、商业知识。

当你掌握好前面的基本知识和一些技巧性东西的时候,你应该在业务、行业、商业知识的学习与积累上了。

这个放在最后,不是不重要,而且非常重要,如果前面三点是决定你能否进入这个行业,那么这则是你进入这个行业后,能否成功的最根本的因素。数据与具体行业知识的关系,比作池塘中鱼与水的关系一点都不过分,数据(鱼)离开了行业、业务背景(水)是死的,是不可能是“活”。而没有“鱼”的水,更像是“死”水,你去根本不知道看什么(方向在哪)。

如何提高业务知识,特别是没有相关背景的同学。很简单,我总结了几点:

1、多向业务部门的同事请教,多沟通。多向他们请教,数据分析师与业务部门没有利益冲突,而更向是共生体,所以如果你态度好,相信业务部门的同事也很愿意把他们知道的告诉你。

2、永远不要忘记了google大神,定制一些行业的关键字,每天都先看看定制的邮件。

3、每天有空去浏览行业相关的网站。看看行业都发生了什么,主要竞争对手或者相关行业都发展什么大事,把这些大事与你公司的业务,数据结合起来。

4、有机会走向一线,多向一线的客户沟通,这才是最根本的。

标题写着告诫,其实谈不上,更多我自己的一些心得的总结。希望对新进的朋友有帮助,数据分析行业绝对是一个朝阳行业,特别是互联网的不断发展,一个不谈数据的公司根本不叫互联网公司,数据分析师已经成为一个互联网公司必备的职位了。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片