Excel表格网

excel迭代求和(迭代求和什么意思)

来源:www.0djx.com  时间:2022-10-23 19:50   点击:319  编辑:表格网  手机版

1. 迭代求和什么意思

1.首先先在电脑上找到需要求和的表格,然后以WPS表格的形式打开。

2.在打开的WPS表格上方中找到“fx",点击一下,可以看到系统自动弹出全部函数的一个小方框。

3.在全部函数的信息方框中找到"SUM",然后点击选择一下"SUM",之后点击下方的”确认“。

4.在WPS表格上,按住鼠标左键拉动需要求和的数值范围,这时候可以看到方框中显示需要求和的数值范围,这时候可以看到方框中显示需要求和的是Q4到Q13,之后点击确定就可以得到求和的数值啦。

5如果在WPS上求和的数字不是整排的话,可以先将鼠标放在数值1,然后再将鼠标放到需要求和的数值上点击一下,之后在将鼠标放到数值2上,后同样将鼠标放到需要求和的数值上点击一下,重复几个数值后,就可以得到不是整排数值所求的和啦。

6还由一种简单的求和方法,就是在打开的WPS表格中,在一个空格中输入”+“,之后用鼠标点击数值,再输入”+“,再用鼠标点击数值,重复多次,直到添加完所需要求和的数值,后点击上方”fx"前面的打钩符号。

7这时候就可以在表格上看到求好和的数值啦。

2. 直接求解和迭代求解

1、显式算法

基于动力学方程,因此无需迭代;而静态隐式算法基于虚功原理,一般需要迭代计算。显式算法,最大优点是有较好的稳定性。

动态显式算法采用动力学方程的一些差分格式(如广泛使用的中心差分法、线性加速度法、Newmark法和wilson法等),不用直接求解切线刚度,不需要进行平衡迭代,计算速度快,时间步长只要取的足够小,一般不存在收敛性问题。因此需要的内存也比隐式算法要少。并且数值计算过程可以很容易地进行并行计算,程序编制也相对简单。但显式算法要求质量矩阵为对角矩阵,而且只有在单元级计算尽可能少时速度优势才能发挥, 因而往往采用减缩积分方法,容易激发沙漏模式,影响应力和应变的计算精度。

静态显式法基于率形式的平衡方程组与Euler向前差分法,不需要迭代求解。由于平衡方程式仅在率形式上得到满足,所以得出的结果会慢慢偏离正确值。为了减少相关误差,必须每步使用很小的增量。

2、隐式算法

隐式算法中,在每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型的线性方程组,这以过程需要占用相当数量的计算资源、磁盘空间和内存。该算法中的增量步可以比较大,至少可以比显式算法大得多,但是实际运算中上要受到迭代次数及非线性程度的限制,需要取一个合理值。

3. 迭代求解是什么意思

迭代计算是数值计算中一类典型方法,应用于方程求根,方程组求解,矩阵求特征值等方面。在计算机科学中,迭代是程序中对一组指令(或一定步骤)的重复。它既可以被用作通用的术语(与“重复”同义),也可以用来描述一种特定形式的具有可变状态的重复。

迭代计算的基本思想是逐次逼近,先取一个粗糙的近似值,然后用同一个递推公式,反复校正此初值,直至达到预定精度要求为止。迭代计算次数指允许公式反复计算的次数,在Excel中通常只针对循环引用生效.其他公式在循环引用状态下不产生变化。

4. 迭代法求和

a³+b³=a³+a²b-a²b+b³=a²(a+b)-b(a²-b²)=a²(a+b)-b(a+b)(a-b)

=(a+b)[a²-b(a-b)]=(a+b)(a²-ab+b²)

a³-b³=a³-a²b+a²b-b³=a²(a-b)+b(a²-b²)=a²(a-b)+b(a+b)(a-b)

=(a-b)[a²+b(a+b)]=(a-b)(a²+ab+b²)

公式证明

⒈迭代法:  

我们知道:

0次方和的求和公式ΣN^0=N 即1^0+2^0+...+n^0=n

1次方和的求和公式ΣN^1=N(N+1)/2 即1^1+2^1+...+n^1=n(n+1)/2

2次方和的求和公式ΣN^2=N(N+1)(2N+1)/6 即1^2+2^2+…+n^2=n(n+1)(2n+1)/6——平方和公式,此公式可由同种方法得出,取公式(x+1)^3-x^3=3x^2+3x+1,迭代即得。

取公式:(X+1)^4-X^4=4×X^3+6×X^2+4×X+1

系数可由杨辉三角形来确定

那么就得出:

(N+1)^4-N^4=4N^3+6N^2+4N+1…………⑴

N^4-(N-1)^4=4(N-1)^3+6(N-1)^2+4(N-1)+1…………⑵

(N-1)^4-(N-2)^4=4(N-2)^3+6(N-2)^2+4(N-2)+1…………⑶

…………

2^4-1^4=4×1^3+6×1^2+4×1+1…………(n)

于是⑴+⑵+⑶+……+(n)有

左边=(N+1)^4-1

右边=4(1^3+2^3+3^3+……+N^3)+6(1^2+2^2+3^2+……+N^2)+4(1+2+3+……+N)+N

所以:

把以上这已经证得的三个公式代入

4(1^3+2^3+3^3+……+N^3)+6(1^2+2^2+3^2+……+N^2)+4(1+2+3+……+N)+N=(N+1)^4-1

得4(1^3+2^3+3^3+……+N^3)+N(N+1)(2N+1)+2N(N+1)+N=N^4+4N^3+6N^2+4N

移项后得 1^3+2^3+3^3+……+N^3=1/4 (N^4+4N^3+6N^2+4N-N-2N^2-2N-2N^3-3N^2-N)

等号右侧合并同类项后得 1^3+2^3+3^3+……+N^3=1/4 (N^4+2N^3+N^2)

1^3+2^3+3^3+……+N^3= 1/4 [N(N+1)]^2

立方和公式推导完毕

1^3+2^3+3^3+……+N^3= 1/4 [N(N+1)]^2

2. 因式分解思想证明如下:

a^3+b^3=a^3+a^2×b+b^3-a^2×b 

=a^2(a+b)-b(a^2-b^2)=a^2(a+b)-b(a+b)(a-b)

=(a+b)[a^2-b(a-b)]=(a+b)(a^2-ab+b^2)

5. 迭代法数列求和

首先需要启用迭代计算 ,Excel 选项 --公式 --启用迭代运算 次数可以多设一点,比如30000次 A1 输入公式: =IF(SUM(A$1:A$7)=20,A1,RANDBETWEEN(1,2000)/100) 公式下拉 , 生成的是 静态的 随机结果 需要重新生成 重新下拉

6. 迭代值怎么求

迭代

迭代是重复反馈过程的活动,其目的是逼近所需目标或结果。每一次对过程的重复称为一次“迭代”,而每一次迭代得到的结果会作为下一次迭代的初始值。

对计算机特定程序中需要反复执行的子程序*(一组指令),进行一次重复,即重复执行程序中的循环,直到满足某条件为止,亦称为迭代。

7. 迭代求和什么意思解释

a³+b³=a³+a²b-a²b+b³=a²(a+b)-b(a²-b²)=a²(a+b)-b(a+b)(a-b)

=(a+b)[a²-b(a-b)]=(a+b)(a²-ab+b²)

a³-b³=a³-a²b+a²b-b³=a²(a-b)+b(a²-b²)=a²(a-b)+b(a+b)(a-b)

=(a-b)[a²+b(a+b)]=(a-b)(a²+ab+b²)

公式证明

⒈迭代法:  

我们知道:

0次方和的求和公式ΣN^0=N 即1^0+2^0+...+n^0=n

1次方和的求和公式ΣN^1=N(N+1)/2 即1^1+2^1+...+n^1=n(n+1)/2

2次方和的求和公式ΣN^2=N(N+1)(2N+1)/6 即1^2+2^2+…+n^2=n(n+1)(2n+1)/6——平方和公式,此公式可由同种方法得出,取公式(x+1)^3-x^3=3x^2+3x+1,迭代即得。

取公式:(X+1)^4-X^4=4×X^3+6×X^2+4×X+1

系数可由杨辉三角形来确定

那么就得出:

(N+1)^4-N^4=4N^3+6N^2+4N+1…………⑴

N^4-(N-1)^4=4(N-1)^3+6(N-1)^2+4(N-1)+1…………⑵

(N-1)^4-(N-2)^4=4(N-2)^3+6(N-2)^2+4(N-2)+1…………⑶

…………

2^4-1^4=4×1^3+6×1^2+4×1+1…………(n)

于是⑴+⑵+⑶+……+(n)有

左边=(N+1)^4-1

右边=4(1^3+2^3+3^3+……+N^3)+6(1^2+2^2+3^2+……+N^2)+4(1+2+3+……+N)+N

所以:

把以上这已经证得的三个公式代入

4(1^3+2^3+3^3+……+N^3)+6(1^2+2^2+3^2+……+N^2)+4(1+2+3+……+N)+N=(N+1)^4-1

得4(1^3+2^3+3^3+……+N^3)+N(N+1)(2N+1)+2N(N+1)+N=N^4+4N^3+6N^2+4N

移项后得 1^3+2^3+3^3+……+N^3=1/4 (N^4+4N^3+6N^2+4N-N-2N^2-2N-2N^3-3N^2-N)

等号右侧合并同类项后得 1^3+2^3+3^3+……+N^3=1/4 (N^4+2N^3+N^2)

1^3+2^3+3^3+……+N^3= 1/4 [N(N+1)]^2

立方和公式推导完毕

1^3+2^3+3^3+……+N^3= 1/4 [N(N+1)]^2

2. 因式分解思想证明如下:

a^3+b^3=a^3+a^2×b+b^3-a^2×b 

=a^2(a+b)-b(a^2-b^2)=a^2(a+b)-b(a+b)(a-b)

=(a+b)[a^2-b(a-b)]=(a+b)(a^2-ab+b^2)

8. 迭代求和公式

进入“文件”菜单后,我们在左侧菜单栏选择“选项”菜单,打开“excel选项”弹窗,然后在打开的弹窗中左侧菜单栏里选择“公式”菜单项。

在“公式”选项中,我们找到“计算选项”栏目,然后继续在其中找到并勾选上“启用迭代计算”选项,开启该功能。

如果我们只是想要单元格单次累计相加,我们需要将下面的“最多迭代次数”设置为1,否则计算时单元格会多次进行累计相加。

设置好之后,我们点击弹窗下方的“确定”按钮,返回到excel文档中,然后在需要实现累计相加求和的单元格中输入公式。

9. 迭代计算的意思

迭代求解是数值计算中一类典型方法,应用于方程求根,方程组求解,矩阵求特征值等方面。

其基本思想是逐次逼近,先取一个粗糙的近似值,然后用同一个递推公式,反复校正此初值,直至达到预定精度要求为止。

迭代计算次数指允许公式反复计算的次数,在Excel中通常只针对循环引用生效。其他公式在循环引用状态下不产生变化。

在计算机科学中,迭代是程序中对一组指令(或一定步骤)的重复。它既可以被用作通用的术语(与“重复”同义),也可以用来描述一种特定形式的具有可变状态的重复。

在第一种意义下,递归是迭代的一个例子,但是通常使用一种递归式的表达。比如用0!=1,n!=n*(n-1)!来表示阶乘。而迭代通常不是这样写的。

而在第二种(更严格的)意义下,迭代描述了在指令式编程语言中使用的编程风格。与之形成对比的是递归,它更偏向于声明式的风格。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片