1. 红外光谱数据excel
Documents To Go是由DataViz 公司开发的一款不错的智能手机办公应用软件。现在你可以随时随地地查看并编辑Word,Excel和 PowerPoint文件,还可以查看PDF文件,而不用再担心是怎样接受文件 - 无论是否通过外部存储卡,蓝牙,红外线,MMS或电子邮件。 DocumentsToGo是目前 Android 平台上最好用的办公软件,能够进行幻灯片编辑、阅读以及PDF阅读功能,也能对Word文档和 Excel表格进行阅读与编辑,对文档作复制、粘贴、插入等各种编辑动作。
因此有了“DocumentsToGo”,用户能够直接在手机上编写文档,随时随地记录工作内容,及时更改重要文件,就好像你身边有了一个称职的移动办公小秘书!
2. 红外光谱数据库
国际医学文献数据库检索网站
Medline——世界上最著名的医学文献检索系统之一
AIDS Databases——有关艾滋病的临床实验、药物研制以及相关文献数据库
CANCERLIT——癌症数据库(National Cancer Institute)
CHID online——综合卫生信息数据库,提供有关卫生、卫生教育资源的题录、文摘等信息
ClinicalTrials.gov——向医患人员提供的临床实验信息数据库
DIRLINE——收集美国约17,000个政府机构、研究机构、公司、学术机构等信息
药物信息库——包含有9,000余种美国处方与非处方药物信息
HSTAT——包括有健康指南、评价、和消费者指南信息的全文数据库
NCCAM Resources——补充和替代医学资源
Dietary Supplements——提供维生素、矿物质、植物等信息
畸形、智力迟缓数据库——提供先天畸形、智力发育迟缓信息
LOCATORplus——杂志、书籍和视听教材目录数据库
Chemical Abstract——覆盖化学、化工、医学、生物学、环境、食品等多学科的科技文献系统
Dialog 联机检索系统——世界上最大的文献检索系统
Biomedicine——荷兰医学文摘,世界权威性的医药文献数据库。
RHO——生殖健康展望,由William H .Gates 基金会的基金资助
Out Look——有关生殖健康的论题,由 PATH 出版,联合国人口基金资助,可免费索取
医药信息网——有药品数据库、疾病数据库、新药数据库、医药市场等主要数据库
MEDLINE Search——最权威的生物医学文献数据库,可获取全球范围内的4300种期刊的文献
Consensus Statements——提供对医生、患者有重要意义的有争议医学问题一致性见解
Cancer net Database——综合癌症信息数据库
Rare Diseases Database——罕见疾病临床研究数据库
Visible Human Project——可视人计划数据库
TOXNET Databases——毒理学数据库,将有关毒理和有害物质信息分为八个文档
FDA——最新的有关食品、药物、生物制剂、美容品、医学装置等通过、调整等信息
Guideline Clearinghouse——提供临床医疗指南,汇总美国各权威协会和学术机构制定的各种指南性文件
Women's Health & Environment——妇女卫生与健康研究信息数据库
Rehabilitation Information——康复信息数据库
INFOTRIEVE——可通过WEB浏览器查找医学文献
CLINIWEB——医学信息检索系统,帮助医生从WEB上查询有用的医学信息
Health A to Z——一个功能强大的INTERNET医学信息资源搜索器
Medguide——收录了网上大部分生物医学资源,支持多词逻辑检索
achoo——INTERNET医学信息资源搜索
MedAll List——是哈佛大学收集医药网点的列表,有大量网上医学院校和图书馆的联接
MedExplorer——检索方法简便,主要提供有关医学新闻及杂志的信息
MEL health resources——将INTERNET上的医药信息按学科分类进行整理,提供关键词查找
Medical Virtual library——是一个分布式的资源系统,提供关键词查找,并有按字序排列的列表
BiomedNet——由美国多家机构联合建立,收集网页1万余个
Medscape——面向临床医师和其他医疗卫生专业人员的交互式的商用Web站点
Medical Matrix——有分类检索和关键词检索两种检索方式。还提供免费Mailing lists
Doctor's Guide——向医生和患者提供信息和服务,特色服务是新闻和会议消息
美国化学文摘社——世界最大、最强化学信息库,1300万条摘要、1650万种物质
美国专利数据库——提供美国专利目录和摘要数据库,免费查找专利名称、摘要等信息
天然产物数据库——提供75年以来活性天然产物,通过电子邮件申请帮助查询
IBM 专利服务器——提供美国专利局26年来的专利摘要,免费摘要、付费定购拷贝件
Science 科学——世界订户最多综合性科学刊物,这是我国引进的电子版
PharmInfoNet——医药信息网,提供药品、疾病、新药数据库;医学专题综述、医药市场等
Nature Medicine——自然杂志出版生物医学论文,提供1996年以来各期目录及摘要
The Lancet 柳叶刀——始于1823年著名医学杂志,提供大量全文,全部免费阅读')
美国国家健康研究所——联邦政府生物医学研究中心,世界上著名的生物医学研究中心
HealthGate数据公司——提供免费Medline查询,最新研究信息,帮助临床治疗、生物医学研究及教育
生物医学文献数据库——中国医科院信息研究所研制,综合性生物医学数据库,国内权威
美国医学协会出版物——美国医学协会出版,新闻、文摘或全文,包括以下部分。内科学文卷、皮肤病文卷、外科学文卷、眼科学文卷、美国医学会志、美国医学新闻、神经病学文卷、妇女健康杂志、家庭医疗文卷、普通精神病学文卷、耳鼻喉、头颈外科、儿科及青春期医学
British Medical Journal——英国医学杂志
Medical Conference——医学会议库,4500多条会议信息,每日更新
NIST Webbook and Chemistry Webbook——美国国家标准与技术研究所数据集,免费查询5000多种化合物的红外光谱,8000多种化合物质谱等等。
New England Journal of Medicine——报道医学重要研究成果的周刊,提供全部过刊信息及现刊的论文摘要
国内医学文献数据库检索网站
中国科技信息资源共享网络——涵盖中国生物医学文献数据库(CBM)、美国MEDLINE数据库
中国科学引文数据库——集多种功能为一体的综合性文献数据库
中国科学引文索引数据库——收集我国出版315种重要期刊,91-94年13万篇论文及45万引文摘要。
中医中药数据库——中国科学院科学数据库提供
中国中医药文献检索中心——由中国中医研究院信息中心制作,提供中医药方面的Web界面文献检索服务
金纬达海峡信息数据库检索——包括动态信息、科技类、综合类以及台湾系列信息等六十五个数据库
万方数据医学期刊——由中国科技信息研究所制作,收录了近百种医学期刊的电子版,免费使用
医管论文(台湾医院协会)——收有台大医学院,阳明医学院,高雄医学院,中国医药学院论文若干
中国专利数据库——中国知识产权局研制,提供85年专利法实施后批准的专利,收集我国出版315种重要期刊,91-94年13万篇论文及45万引文摘要
中医药期刊文献数据库——收集我国出版315种重要期刊,91-94年13万篇论文及45万引文摘要
海峡信息数据库检索——中文网上科技文献检索
中国医学信息网络——栏目有中国卫生事业,中国生物医学文献数据库,中医学院,协和医科大,医学信息网,亚洲桥,Internet信息查询
中国卫生事业——有卫生事业概况、中国生物医学文献数据库、中国医学科学院、医学信息网络、医药卫生机构等栏目
中国生物医学文献数据库——收录了1982年以来近千种中国生物医学期刊以及会议论文的文献题录
3. 红外光谱数据处理软件
你可以先吧数据另存为 .CSV 格式,然后用 Excel打开,选择这两列数据,点击排序,按照逆序重新排列,然后保存。再用上次教过你的用OMNIC 打开 .CSV格式的文件方法重新打开新保存的文件就可以了。
4. 红外光谱数据怎么处理
红外光谱仪图是图片格式的话,工具栏插入- 图片即可。萊垍頭條
5. 红外光谱数据Excel如何分析
OMNIC可以读取ASCII 码文件,如果是用Excel 保存,文件的扩展名应该改为 .CSV,这样 OMNIC 才能读取。 .CSV 文件中必须是一列X轴,一列Y轴;且X轴的数值要按顺序排列的,不能是乱的;数值是浮点型,或者科学计数法。 打开 .CSV 文件后,程序会让你选择参数,比如X轴 、Y轴的单位,分辨率等,按照你的数据要求选择就行了。 然后点确定。
6. 红外光谱数据处理技巧
水峰主要原因如下: 样品没有干燥好; KBr没有干燥好; 一般在红外灯下多烤烤就可以除去。 样品中含有结晶水也肯能引起水峰,可以在其分解温度一下加热干燥。
7. 红外光谱数据如何分析
红外光谱 [1] (infrared spectra),以波长或波数为横坐标 以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。
按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。
对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。
每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。 量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。
若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。
分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动模式。
当孤立分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。含N个原子的分子应有3N-6个简正振动方式;如果是线性分子,只有3N-5个简正振动方式。图中示出非线性3原子分子仅有的3种简正振动模式。
分子的转动指的是分子绕质心进行的运动。分子振动和转动的能量不是连续的,而是量子化的。
当分子由一种振动(或转动)状态跃迁至另一种振动(或转动)状态时,就要吸收或发射与其能级差相应的光。 研究红外光谱的方法主要是吸收光谱法。使用的光谱有两种类型。一种是单通道或多通道测量的棱镜或光栅色散型光谱仪,另一种是利用双光束干涉原理并进行干涉图的傅里叶变换数学处理的非色散型的傅里叶变换红外光谱仪。 红外光谱具有高度的特征性,不但可以用来研究分子的结构和化学键,如力常数的测定等,而且广泛地用于表征和鉴别各种化学物种。 红外识谱歌 红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。
二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。
烯氢伸展过三千,排除倍频和卤烷。
末端烯烃此峰强,只有一氢不明显。 化合物,又键偏,~1650会出现。
烯氢面外易变形,1000以下有强峰。 910端基氢,再有一氢990。 顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。
炔氢伸展三千三,峰强很大峰形尖。
三键伸展二千二,炔氢摇摆六百八。
芳烃呼吸很特征,1600~1430。 1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。
五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830; 间二取代出三峰,700、780,880处孤立氢 醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。 1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。
若与π键紧相连,二个吸收要看准, 1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰, 环氧乙烷有三峰,1260环振动, 九百上下反对称,八百左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别, 开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。 吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽, 920,钝峰显,羧基可定二聚酸、 酸酐千八来偶合,双峰60严相隔, 链状酸酐高频强,环状酸酐高频弱。 羧酸盐,偶合生,羰基伸缩出双峰, 1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。 1180甲酸酯,1190是丙酸, 1220乙酸酯,1250芳香酸。 1600兔耳峰,常为邻苯二甲酸。 氮氢伸展三千四,每氢一峰很分明。 羰基伸展酰胺I,1660有强峰; N-H变形酰胺II,1600分伯仲。 伯胺频高易重叠,仲酰固态1550; 碳氮伸展酰胺III,1400强峰显。 胺尖常有干扰见,N-H伸展三千三, 叔胺无峰仲胺单,伯胺双峰小而尖。 1600碳氢弯,芳香仲胺千五偏。 八百左右面内摇,确定最好变成盐。 伸展弯曲互靠近,伯胺盐三千强峰宽, 仲胺盐、叔胺盐,2700上下可分辨, 亚胺盐,更可怜,2000左右才可见。 硝基伸缩吸收大,相连基团可弄清。 1350、1500,分为对称反对称。 氨基酸,成内盐,3100~2100峰形宽。 1600、1400酸根展,1630、1510碳氢弯。 盐酸盐,羧基显,钠盐蛋白三千三。 矿物组成杂而乱,振动光谱远红端。 钝盐类,较简单,吸收峰,少而宽。 注意羟基水和铵,先记几种普通盐。 1100是硫酸根,1380硝酸盐, 1450碳酸根,一千左右看磷酸。 硅酸盐,一峰宽,1000真壮观。 勤学苦练多实践,红外识谱不算难。 红外光谱发展史 雨后天空出现的彩虹,是人类经常观测到的自然光谱。而真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。 从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区。1800 年英国科学家W. Herschel 将来自太阳的辐射构成一副与牛顿大致相同的光谱,然后将一支温度计通过不同颜色的光,并且用另外一支不在光谱中的温度计作为参考。他发现当温度计从光谱的紫色末端向红色末端移动时,温度计的读数逐渐上升。特别令人吃惊的是当温度计移动到红色末端之外的区域时,温度计上的读数达到最高。这个试验的结果有两重含义,首先是可见光区域红色末端之外还有看不见的其他辐射区域存在,其次是这种辐射能够产生热。由于这种射线存在的区域在可见光区末端以外而被称为红外线。(1801 年德国科学家J.W. Ritter 考察太阳光谱的另外一端,即紫色端时发现超出紫色端的区域内有某种能量存在并且能使AgCl 产生化学反应,该试验导致了紫外线的发现。 1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。随后的重大突破是测辐射热仪的发明。1880年天文学家Langley在研究太阳和其他星球发出的热辐射时发明一种检测装置。该装置由一根细导线和一个线圈相连,当热辐射抵达导线时能够引起导线电阻非常微小的变化。而这种变化的大小与抵达辐射的大小成正比。这就是测辐射热仪的核心部分。用该仪器突破了照相的限制,能够在更宽的波长范围检测分子的红外光谱。采用NaCl作棱镜和测辐射热仪作检测器,瑞典科学家Angstrem第一次记录了分子的基本振动(从基态到第一激发态)频率。1889年Angstrem首次证实尽管CO和CO2都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱图。这个试验最根本的意义在于它表明了红外吸收产生的根源是分子而不是原子。而整个分子光谱学科就是建立在这个基础上的。不久Julius发表了20个有机液体的红外光谱图,并且将在3000cm-1的吸收带指认为甲基的特征吸收峰。这是科学家们第一次将分子的结构特征和光谱吸收峰的位置直接联系起来。图1是液体水和重水部分红外光谱图,主要为近红外部分。图中可观察到水分子在739和970nm处有吸收峰存在,这些峰都处在可见光区红色一端之外。由于氢键作用,液体水的红外光谱图比气态水的谱图要复杂得多。 红外光谱仪的研制可追溯的20 世纪初期。1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。因此Perkin-Elmer 21 很快在美国畅销。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。 现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。与传统的仪器相比,傅立叶红外光谱仪具有快速、高信噪比和高分辨率等特点。更重要的是傅立叶变换催生了许多新技术,例如步进扫描、时间分辨和红外成像等。这些新技术大大的拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。如果采用分光的办法,这些技术是不可能实现的。这些技术的产生,大大的拓宽了红外技术的应用领域。 是用红外成像技术得到的地球表面温度分布和地球大气层中水蒸气含量图。没有傅立叶变换技术,不可能得到这样的图像。图1.2 Perkin-Elmer 21 双光束红外光谱议。该仪器是由美国Perkin-Elmer 公司1950 开始制造,是最早期商业化生产的双光束红外光谱议。 红外光谱的理论解释是建立在量子力学和群论的基础上的。1900 年普朗克在研究黑体辐射问题时,给出了著名的Plank 常数h, 表示能量的不连续性。量子力学从此走上历史舞台。1911 年W Nernst 指出分子振动和转动的运动形态的不连续性是量子理论的必然结果。1912 年丹麦物理化学家Niels Bjerrum 提出HCl 分子的振动是带负电的Cl 原子核带正电的H 原子之间的相对位移。分子的能量由平动、转动和振动组成,并且转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。后来矩阵、群论等数学和物理方法被应用于分子光谱理论。随着现代科学的不断发展,分子光谱的理论也在不断的发展和完善。分子光谱理论和应用的研究还在发展之中。多维分子光谱的理论和应用就是研究方向之一。
8. 红外光谱数据分析
红外检测有机物的特征官能团,
红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。
由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。
分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。
9. 红外光谱数据格式
红外光谱分辨率(以△v可表示)是指分辨两条相邻吸收谱线的能力,它是由干涉仪动镜的移动距离决定的,根据干涉仪的工作原理,通过光程差的数学计算,分辨率近似等于Zda光程差的倒数,也就是动镜移动有效距离2倍的倒数,例如一台仪器的动镜移动有效距离为4cm,这台仪器的Zda分辨率为0.125cm-1。动镜移动有效距离越长,分辨率越高,分辨率的数值越小。用于一般分析时,选用4cm-1即可。
分辨率是红外光谱仪非常重要的性能指标,分辨率越高,红外光谱仪越贵。按分辨率的大小将红外光谱仪划分为通用型、分析型、研究型、高级研究型四个等级,如果按较粗略分法,可将其分为研究型(包括研究型、高级研究型)、通用型(包括通用型、分析型)两种,Zgao分辨率数值小于0.5cm-1(也有资料以0.25cm-1划分)的属于研究型,反之属于普通型。
研究型红外光谱仪Zgao分辨率是通过测定CO的红外光谱得到的,具体方法为:仪器测试参数选分辨率为仪器Zgao分辨率,设定光阑于Z小状态,光谱测定范围设置为2300~2000cm-1,将10cm长的红外气体池抽真空,测定真空红外气体池的单光束光谱为背景光谱,然后通入CO气体,当压力达400~650Pa时,将气体池密封好,测定气体池内CO的红外光谱,选择其中一个独立、对称的吸收峰,测定其半高宽,即为该红外光谱仪的Zgao分辨率。
10. 红外光谱数据处理
红外光谱用于定量分析远远不如紫外-可见光谱法。其原因是:
1、红外谱图复杂,相邻峰重叠多,难以找到合适的检测峰。
2、红外谱图峰形窄,光源强度低,检测器灵敏度低,因而必须使用较宽的狭缝。这些因素导致对比尔定律的偏离。
3、红外测定时吸收池厚度不易确定,参比池难以消除吸收池、溶剂的影响。 定量分析依据是比尔定律:ecl=logI0/I或A=ecl。如果有标准样品,并且标准样品的吸收峰与其它成分的吸收峰重叠少时,可以采用作出标准曲线的方法进行分析,即配制一系列不同含量的标准样品,测定数据点,作出曲线。相关步骤可参考紫外-可见光谱的定量分析方法。
11. 红外光谱数据分类算法
红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数 s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。
- 相关评论
- 我要评论
-