Excel表格网

excel欧式距离计算公式(计算欧式距离的公式)

来源:www.0djx.com  时间:2022-11-25 01:49   点击:130  编辑:表格网  手机版

1. 计算欧式距离的公式

马氏距离(Mahalanobis Distance)是一种距离的度量,可以看作是欧氏距离的一种修正,修正了欧式距离中各个维度尺度不一致且相关的问题。

2. 矩阵欧式距离计算公式

欧式空间中的一组基T1到另一组基T2的过渡矩阵C必定是可逆矩阵,但未必是正交矩阵,但是如果T1和T2都是标准正交基,那么C必定是正交矩阵;反过来,只要一个矩阵C是正交矩阵,那么必定可以找到欧式空间的两组标准正交基T1和T2,使得C为从T1到T2的过渡矩阵。

3. 计算欧氏距离的公式

L2距离就是二范数,用norm试一下。比如两个1D向量分别为a,b,则欧式距离可以表示为:norm(a-b), 相当于sqrt(sum((a-b).^2))

4. 计算欧式距离的公式是什么

距离判别法:距离判别方是通过计算待测点到各个分类的距离,在根据计算出距离的大小,进行判别该待测点属于那个分类。但是距离的计算是通过马氏距离进行计算的,而不是我们平常几何中用的欧式距离。

5. 计算欧式距离的公式有哪些

pdist是Matlab里的一个函数,常用在聚类算法中,用来获得每两个点之间的距离。

一个矩阵A的大小为M*N,那么B=pdist(A)得到的矩阵B的大小为1行M*(M-1)/2列,表示的意义是M行数据,每两行计算一下欧式距离(pdist(x,distance),distance也可以用来表示其他距离,默认的是欧式距离)。

6. 标准欧式距离公式

遗传距离指个体、群体或种之间用DNA序列或等位基因频率来估计的遗传差异大小。衡量遗传距离的指标包括用于数量性状分析的欧式距离

7. 矩阵的欧式距离公式

两平行线之间的距离公式:d=|C1-C2|/√(A²+B²)。两平行线方程分别是:Ax+By+C1=0和Ax+By+C2=0。

两平行线之间的距离公式

设两条直线方程为

Ax+By+C1=0

Ax+By+C2=0

则其距离公式为|C1-C2|/√(A²+B²)

推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Aa+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为

d=|Aa+Bb+C2|/√(A²+B²)

=|-C1+C2|/√(A²+B²)

=|C1-C2|/√(A²+B²)

在机器学习、人工智能领域常用的距离计算公式。

曼哈顿距离

曼哈顿距离又称“计程车距离”,由十九世纪的赫尔曼·闵可夫斯基所创。点P1(x1,y1)P1(x1,y1)和P2(x2,y2)P2(x2,y2)的距离如下: distance(P1,P2)=|x2−x1|+|y2−y1|distance(P1,P2)=|x2−x1|+|y2−y1|

欧几里得距离

欧几里得距离也叫做(欧氏距离)是欧几里得空间中两点的“普遍”(直线距离)。点P1(x1,x2,x3,,,xn)P1(x1,x2,x3,,,xn)和P2(y1,y2,y3,,,yn)P2(y1,y2,y3,,,yn)的距离如下: distance=(x1−y1)2+(x2−y2)2+,,,+(xn−yn)2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−√=∑n1(xi−yi)2−−−−−−−−−−−√distance=(x1−y1)2+(x2−y2)2+,,,+(xn−yn)2=∑1n(xi−yi)2

切比雪夫距离

切比雪夫距离(Chebyshev distance),二个点之间的距离定义为其各坐标数值差的最大值。点P1(x1,x2,x3,,,xn)P1(x1,x2,x3,,,xn)和P2(y1,y2,y3,,,yn)P2(y1,y2,y3,,,yn)的距离如下: distance(P1,P2)=max(|x1−y1|,|x2−y2|,,,|xn−yn|)distance(P1,P2)=max(|x1−y1|,|x2−y2|,,,|xn−yn|)

闵尔科夫斯基距离

闵尔科夫斯基距离(闵式距离),以俄国科学家闵尔科夫斯基命名,是欧氏距离的推广,是一组距离的的定义。点P1(x1,x2,x3,,,xn)P1(x1,x2,x3,,,xn)和P2(y1,y2,y3,,,yn)P2(y1,y2,y3,,,yn)的距离如下: distance(P1,P2)=∑n1(xi−yi)p−−−−−−−−−−−√pdistance(P1,P2)=∑1n(xi−yi)pp

当p=1时,就是曼哈顿距离

当p=2时,就是欧式距离

当p->∞时,就是切比雪夫距离

马氏距离

由印度科学家马哈拉诺比斯提出,表示数据的协方差距离。是一种有效的计算两个位置样本集相似度的方法。与欧氏距离不同的是他考虑到各种特性之间的联系并且是尺度无关的,即独立于测量尺度。如果协方差矩阵为单位矩阵,马氏距离就简化为欧式距离,如果协方差矩阵为对角阵,其也可称为正规化的马氏距离。

汉明距离

在信息论中,两个等长字符串的汉明距离是两个字符串相对应位置上的不同字符串的个数。

x=x1,x2,,,xny=y1,y2,,,yndistance(x,y)=∑1nI(xi,yi)I(xi,yi)={1,0,ifxi≠yiifxi=yix=x1,x2,,,xny=y1,y2,,,yndistance(x,y)=∑1nI(xi,yi)I(xi,yi)={1,ifxi≠yi0,ifxi=yi

余弦相似度

余弦相似度是通过测量两个向量夹角的度数来度量他们之间的相似度。0度的相似度是1,90度的相似度是0,180的相似度是-1。结果的测量只与向量的指向方向有关,与向量的长度无关。余弦相似度通常用于正空间,因此给出的值为0到1之间。对于A和B的距离是:

cos(θ)=A⋅B||A||⋅||B||=∑n1(Ai×Bi)∑ni(Ai)2−−−−−−−√×∑ni(Bi)2−−−−−−−√cos(θ)=A⋅B||A||⋅||B||=∑1n(Ai×Bi)∑in(Ai)2×∑in(Bi)2

杰卡德距离

杰卡德距离是杰卡德相似系数的补集。杰卡德相似系数用于度量两个集合之间的相似性,定义为两个集合交集集合元素的个数比上并集集合元素的个数。

J(A,B)=A∩BA∪BdJ=1−J(A,B)=A∩B−A∪BA∪B{J(A,B)=10≤J(A,B)<1 if A=∅andB=∅ if elseJ(A,B)=A∩BA∪BdJ=1−J(A,B)=A∩B−A∪BA∪B{J(A,B)=1 if A=∅andB=∅0≤J(A,B)<1 if else

皮尔森相关系数

皮尔森相关系数是一种线性相关系数。是两个变量线性相关程度的统计量,皮尔森相关系数的绝对值越大则相关性越强。

r=∑ni((Xi−x¯)(Yi−y¯))∑n1(xi−x¯)2−−−−−−−−−−√∑ni(yi−y¯)2−−−−−−−−−−√r=∑in((Xi−x¯)(Yi−y¯))∑1n(xi−x¯)2∑in(yi−y¯)2

编辑距离

编辑距离(Edit Distance):又称Levenshtein距离,由俄罗斯科学家Vladimir Levenshtein在1965年提出。是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

K-L散度

K-L散度(Kullback-Leibler Divergence):即相对熵;是衡量两个分布(P、Q)之间的距离;越小越相似。

D(P||Q)=∑inP(i)logP(i)Q(i)

8. 计算欧式距离的公式是

两点之间的距离公式为 d=√[(x1-x2)²+(y1-y2)²]。

两点间距离公式叙述了点和点之间距离的关系。两点的坐标是(x1,y1)和(x2,y2),则两点之间的距离公式为d=√[(x1-x2)²+(y1-y2)²]。

注意特例:当x1=x2时,两点间距离为|y1-y2|;当y1=y2时,两点间距离为|x1-x2|。

数学中常见的距离

1、欧氏距离,也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。在二维和三维空间中的欧氏距离的就是两点之间的距离。

2、曼哈顿距离,出租车几何或曼哈顿距离是由十九世纪的赫尔曼·闵可夫斯基所创词汇,是种使用在几何度量空间的几何学用语,用以标明两个点在标准坐标系上的绝对轴距总和。

3、在数学中,切比雪夫距离或是L∞度量,是向量空间中的一种度量,二个点之间的距离定义是其各坐标数值差绝对值的最大值。以数学的观点来看,切比雪夫距离是由一致范数(或称为上确界范数)所衍生的度量,也是超凸度量的一种

9. 计算欧式距离公式报错

这个函数常用于编程语言中,表示两点之间的欧式距离,用于函数定义和返回。dis其实是distance(距离,目的地)的英文缩写。此外,dis库是Python中自带的一个库(默认的CPython库),用于分析字节码。要注意与MATLAB中的disp函数(用于显示指定文本或数组)区分。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片