1. 逐步回归excel
有两种方法。
第一种,先画散点图,然后添加趋势线,有线性回归、指数、幂函数、多项式回归选项。
第二种,加载数据分析加载项,选择回归,这个可以多元线性回归。
2. 逐步回归分析
回归是一种数据分析方法。逐步回归只是回归过程采用的其中一种方法而已。多元线性回归可以和非线性回归相区分,也就是解释变量和被解释变量之间建立的回归方程。
多元回归是回归分析建模的一种,有一个因变量,建模的时候可能的解释变量有多个,但是搞不清楚哪些变量是解释变量,哪些是干扰变量,所以就想到把变量采用不同的方法放到模型中去进行回归建模。这种方法叫作多元回归法。
3. 逐步回归法的基本原理
aic和bic经常被用作为逻辑回归模型通过逐步回归的方法来筛选变量的标准,当然广义上来说,标准也可以是ks,用了ks的话可能也不算是逐步回归了;xgboost严格意义上没有逐步回归的方法,但是可以借鉴这种原理,ks为标准做后向的特征迭代删除。
4. 逐步回归和线性回归的区别
在研究多项式回归问题时,自变量可能是一组不同的变量或某些组合的变量。
但这些自变量对因变量y的影响不尽相同,有些自变量的作用可以忽略,而保留与 y有显著关系的适度“好”的那部分自变量,这就属于多元回归分析中变量筛选问题。
下面将介绍的逐步回归法,在变量筛选上是行之有效的数学方法。
逐步回归的基本思想是,从当前在圈外的全部变量中,挑选其偏回归平方和贡献最大的变量,用方差比进行显著性检验的办法,判别是否选入;而当前在圈内的全部变量中,寻找偏回归平方和贡献最小的变量,用方差比进行显著性检验的办法,判别是否从回归方程中剔除。
选入和剔除循环反复进行,直至圈外无符合条件的选入项,圈内无符合条件的剔除项为止。
在逐步回归计算中需要用到线性代数中的消去变换法进行变量的选入。
对选入变量的回归系数进行显著性检验,剔除变量仍进行F-检验。
经过若干次选入变量和剔除变量之后,所有变量再没有可入选或剔除的,选择变量的步骤停止,整理资料,得出回归方程。
逐步回归法由于剔除了不重要的变量,因此,无需求解一个很大阶数的回归方程,显著提高了计算效率;又由于忽略了不重要的变量,避免了回归方程中出现系数很小的变量而导致的回归方程计算时出现病态,得不到正确的解。
在解决实际问题时,逐步回归法是常用的行之有效的数学方法。
逐步回归的计算一般需借助计算机计算。
5. 逐步回归分析spss
spss回归分析结果中主要看回归系数R,R值越大,说明变量间相关性越强。
6. 逐步回归法f检验
补充一下,对于回归模型的显著性检验,根据可决系数R-square或者F统计量,这两个存在着等价的关系,不一定需要R-square非常大,只需要看F统计量的P值就可以了。
有时F统计量P值非常小,但是是R-square也不大,比如只有0.2-0.3,这样也没有关系。
对于AIC和SIC准则,这个需要逐步回归来看,或者手动删除添加变量,这两个越小说明变量越合理,模型越好。
对于逐步回归在Eviews6.0中有,5.0版本中没有。祝好运
7. 逐步回归法
做线性回归,有一个步骤是回归变量的选择,在开始回归之前,如果已经对各项因素很熟悉了,基本确定影响因素,那么可以选“进入”,如果对因素不甚了解,对其主次顺序还不太明确时,建议用“逐步”的方法;另外,逐步的方法可以对回归方程进行优化,所以,最终得到的方程一般来讲是最优的。
8. 逐步回归分析结果解读
二元回归是指需要回归的两个变量,包括X和y。
在多元线性回归方程中,由于变量的增加,异方差性最为常见,有时阶数会影响回归,因此需要进行逐步回归来剔除变量,这就要求使用线性回归方程。现在我们也可以用SPSS,Eviews等软件来计算这些
9. 逐步回归模型
多元线性回归 1.打开数据,依次点击:analyse--regression,打开多元线性回归对话框。
2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。4.等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。虚拟变量ABCD四类,以a为参考,那么解释就是b相对于a有无影响,c相对于a有无影响,d相对于a有无影响。5.选项里面至少选择95%CI。点击ok。统计专业研究生工作室原创,请勿复杂粘贴
10. 逐步回归分析eviews
工具/材料:Eviews软件,电脑
1.打开电脑,桌面找到Eviews软件,建立workfile,点击左上角file---new---workfile建立,填写相关起始日期和命名,然后选择“OK”,。
2.窗口中输入“data Y X1 X2”,确定回车键。
3.点击右上角的edit按钮即可锁定或更改数据。
4.窗口中点击“quick”选择下拉菜单的“estimate equation”,在出现的窗口中选择LS。
5.在最新的estimate equation窗口中输入“Y C X1 X2”,确定,得出分析结果,命令输入就好了。
11. 逐步回归法消除多重共线性
、 稳健回归
其主要思路是将对异常值十分敏感的经典最小二乘回归中的目标函数进行修改。经典最小二乘回归以使误差平方和达到最小为其目标函数。因为方差为一不稳健统计量,故最小二乘回归是一种不稳健的方法。为减少异常点的作用,对不同的点施加不同的权重,残差小的点权重大,残差大的店权重小。
2、 变系数回归
地理位置加权
3、 偏最小二乘回归
长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。偏最小二乘法在统计应用中的重要性体现在以下几个方面:偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。能够消除自变量选取时可能存在的多重共线性问题。普通最小二乘回归方法在自变量间存在严重的多重共线性时会失效。自变量的样本数与自变量个数相比过少时仍可进行预测。
4、 支持向量回归
能较好地解决小样本、非线性、高维数和局部极小点等实际问题。
传统的化学计量学算法处理回归建模问题在拟合训练样本时,要求“残差平方和”最小,这样将有限样本数据中的误差也拟合进了数学模型,易产生“过拟合”问题,针对传统方法这一不足之处,SVR采用“ε不敏感函数”来解决“过拟合”问题,即f(x)用拟合目标值yk时,取:f(x) =∑SVs(αi-α*i)K(xi,x)
上式中αi和α*i为支持向量对应的拉格朗日待定系数,K(xi,x)是采用的核函数[18],x为未知样本的特征矢量,xi为支持向量(拟合函数周围的ε“管壁”上的特征矢量),SVs
为支持向量的数目.目标值yk拟合在yk-∑SVs(αi-α*i)K(xi,xk)≤ε时,即认为进一步拟合是无意义的。
5、 核回归
核函数回归的最初始想法是用非参数方法来估计离散观测情况下的概率密度函数(pdf)。为了避免高维空间中的内积运算 由Mercer条件,存在映射函数a和核函数K(?,?),使得:=K(xi ,x)
采用不同的函数作为SVM的核函数K (x i,x),可以实现多种从输入空间到特征空间的非线性映射形式
6、 岭回归
岭回归分析是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的耐受性远远强于最小二乘法。
7、 半参数回归
模型既含有参数分量又含有非参数分量,其参数部分用来解释函数关系已知的部分,它是观测值中的主要成分,而其非参数部分则描述函数关系未知,无法表达为待定参数的函数部分。
8、 自回归
例1.Yt = α+β0Xt +β1Xt-1 +……+βsXt-s + ut,
例2.Yt = f (Yt-1, Yt-2, … , X2t, X3t, … ) ,滞后的因变量(内生变量)作为解释变量出现在方程的右端。这种包含了内生变量滞后项的模型称为自回归模型。
9、正交回归
因素水平值在区间[Zj1, Zj2]内变化,经编码之后,编码值xi在区间[-1,+1]间变化,将响应值y原来对Z1, Z2……Zm的回归问题,转化为y对x1,x2……xm的回归问题。它的主要优点是可以把实验或计算的安排、数据的处理和回归方程的精度统一起来加以考虑,根据实验目的和数据分析来选择实验或计算点,不仅使得在每个实验或计算点上获得的数据含有最大的信息,从而减少实验或计算次数,而且使数据的统计分析具有一些较好的性质,以较少的实验或计算建立精度较高的回归方程。
10、逐步回归
实际问题中影响因变量的因素可能很多,我们希望从中挑选出影响显著的自变量来建立回归模型,这就涉及到变量选择的问题,逐步回归是一种从众多变量中有效地选择重要变量的方法。基本思路为,先确定一初始子集,然后每次从子集外影响显著的变量中引入一个对y 影响最大的,再对原来子集中的变量进行检验,从变得不显著的变量中剔除一个影响最小的,直到不能引入和剔除为止。
11、主成分回归
在统计学中,主成分分析是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
首先对X阵进行主成份分析,T阵的维数可以与X阵相同,如果使用整个T阵参加回归,这样得到的结果与多元线性回归没有多大的差别。因为主成分(新变量)是原变量的线性组合。前面的k个主成份包含了X矩阵的绝大部分有用信息,而后面的主成份则往往与噪声和干扰因素有关。因此参与回归的是少数主成分组成的矩阵。在维数上远小于X。主成分回归通过对参与回归的主成份的合理选择,可以去掉噪音。主成份间相互正交,解决了多元线性回归中的共线性问题。主成分回归能够充分利用数据信息,有效地提高模型的抗干扰能力。
- 相关评论
- 我要评论
-