1. 隐函数求解方法
因为函数表达式的意义是:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应;y(x)表示:y就是x的函数。隐函数是由隐式方程所隐含定义的函数。设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)=0,则称方程确定了一个隐函数。记为y=y(x)。显函数是用y=f(x)来表示的函数,显函数是相对于隐函数来说的。扩展资料:隐函数导数的求解一般可以采用以下方法:
1、先把隐函数转化成显函数,再利用显函数求导的方法求导;
2、隐函数左右两边对x求导(但要注意把y看作x的函数);
3、利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
4、把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
2. 怎么求隐函数
隐函数求导,得到的导数y'的表达式中有时含有y,此时不需要变换成x,可以直接用y来表示。
3. 求隐函数的公式法
隐函数 F(x,y)=0,确定的隐函数关系 设为 y=g(x)
那么 F(x,g(x))=0 恒成立
则 F(x,g(x)) 对x的微分等于0,由求导的链锁规则,得到
Fx + Fy*g'(x)=0
上面 Fx,Fy表示F对x,y的偏导数
Fy在 一个邻域内非零,所以可以解出
g'(x)= -Fx/Fy
即 dy/dx= -Fx/Fy
4. 隐函数的求法
①y=x的x次方隐函数求导?解答如下:
(x^x)'=(x^x)(lnx+1) 求法:令x^x=y 两边取对数:lny=xlnx 两边求导,应用复合函数求导法则: (1/y)y'=lnx+1 y'=y(lnx+1) 即:y'=(x^x)(lnx+1)
②y=x的x次方隐函数求导?解答如下:
(x^x)'=(x^x)(lnx+1) 求法:令x^x=y 两边取对数:lny=xlnx 两边求导,应用复合函数求导法则: (1/y)y'=lnx+1 y'=y(lnx+1) 即:y'=(x^x)(lnx+1)
5. 如何求隐函数
隐函数不一定是无法具体写出,它一共有三层意思:
1、无法写出,无法解出来,例如 y + sin(xy) = x,就解不出y跟x的显函数关系(explicit),
只能在理论上认为解得出,认为理论上有一个函数关系,y=f(x)存在。这个函数是意会
的,是概念上的,是隐隐约约的,也就是不能明显的写出来的,所以称为隐函数implicit
function。
2、能解出来,如 y² + 2xy + 1 = 0 ,理论上是能解的,但是由于不是1对1的严格递增或严格
递减函数,解出来反而麻烦,因为要讨论两个根的情况,而不解出来,却能藏拙,却能避
免不必要的麻烦。
3、能解出来,也没有出现2的情况,由于我们的链式求导,保证了我们计算的准确性,无需
解出来。
隐函数的微分方法有两种:
第一种方法:将x、y看成等同地位,谁也不是谁的函数,方程两边微分,解出dy即可。
第二种方法:链式求导,chain rule。
将方程两边都对x求导,有y的地方,先当成y的函数,对y求导,然后再将y对x求导。
最后解出dy/dx,也就是解出y‘。
说明:
隐函数的求导结果,或微分结果,一般都既是x的函数,也是y的函数。
6. 隐函数的求解方法
由二次方程F(x•y)=0所确定的函数y=y(x)称为隐函数。简单来讲,如果一个式子左右两边都有y的形式,那它就是隐函数。而显函数就是常见的左边是一个y,右边是一个关于x的表达式的方程。
隐函数一般是一个含x,y的方程如e^y+x^2+x=0这种形式。由于形式复杂,y不容易变形为用含x的式子表示,即不易表示为y=f(x)。
但如果能确定对于x的每一取值,y都有唯一确定的值与它对应的话,y就是x的函数关系,但这样的关系隐含在方程中,不容易写成明显的函数关系的形式,所以称隐函数。
求解方法
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
7. 隐函数怎么求解
arcsinx的导数是:y'=1/cosy=1/√[1-(siny)²]=1/√(1-x²),此为隐函数求导。
推导过程
y=arcsinx y'=1/√(1-x²)
反函数的导数:
y=arcsinx,
那么,siny=x,
求导得到,cosy*y'=1
即y'=1/cosy=1/√[1-(siny)²]=1/√(1-x²)
隐函数导数的求解
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
反三角函数
反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsinx,Arccosx,Arctanx,Arccotx,Arcsecx,Arccscx。但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。
为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的y值都只能有惟一确定的x值与之对应。
8. 求函数的隐函数
隐函数存在定理的条件是:1.方程F(X,Y,Z)在某点为0, 2.F(X,Y,Z)对X和对Y的偏导数连续, 3.F(X,Y,Z)对Z的偏导数不等于0;
隐函数存在定理主要讲述如何从二元函数F(x,y)的性质来判定由F(x,y)=0所确定的隐函数y=f(x)是存在的,并且,这个函数还具有某些特性。
如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)即显函数来表示。F(x,y)=0即隐函数是相对于显函数来说的。
9. 求隐函数的方法
对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解。
对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。
举例说,y'=2x的通解为y=x^2+C,表示一族抛物线,如果给出初始条件y(0)=0,代入通解得到
0=0+C--->C=0于是通解化作特解:y=x^2,表示一条抛物线。所以,微分方程的通解表示解曲线族,特解则表示该曲线族中的一条。
扩展资料:
求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。
含有未知函数的导数,如
的方程是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程 。
10. 隐函数如何求
1、通常的隐函数,都是一个既含有x又含有y的方程,将整个方程对x求导;
2、求导时,要将y当成函数看待,也就是凡遇到含有y的项时,要先对y求导,然后乘以y对x 的导数,也就是说,一定是链式求导;
3、凡有既含有x又含有y的项时,视函数形式,用积的的求导法、商的求导法、链式求导法, 这三个法则可解决所有的求导;
4、然后解出dy/dx;
5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中。
11. 隐函数求解原函数
首先说明不是所有的隐函数都能显化,否则隐函数求导并不会有太突出的作用,当隐函数不能显化时,我们知道根据函数的定义,必然纯在一个函数,如果我们现在求其导数,不能通过显化后求导,只能运用隐函数求导法,这样即可解出.比如隐函数e^y+xy-e=0是不能显化的隐函数求导法:(步骤)1.两边对X求导*)注意:此时碰到Y时,要看成X的复合函数,求导时要用复合函数求导法分层求导2.从中解出Y导即可(像解方程一样)方程左边是(d/dx)(e^y+xy-e)=e^y(dy/dx)+y+x(dy/dx) A处方程右边是(0)’=0这步是错误的,e^y 对X求导,应看成X的复合函数,故结果为(e^y )*(y导),同理xy对X求导,即为X导*Y+X*Y导=Y+X*Y导,按照此法,结合我给你的步骤,即可弄清楚隐函数求导的精髓了.
- 相关评论
- 我要评论
-