1. 多元线性回归模型案例
在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。
1、普通最小二乘法(Ordinary Least Square, OLS)
普通最小二乘法通过最小化误差的平方和寻找最佳函数。
多元线性回归
通过矩阵运算求解系数矩阵
2、广义最小二乘法(Generalized Least Square)
广义最小二乘法是普通最小二乘法的拓展,它允许在误差项存在异方差或自相关,或二者皆有时获得有效的系数估计值。
多元线性回归
其中,Ω是残差项的协方差矩阵。
2. 多元线性回归模型案例stata
需要准备的工具:电脑,stataSE 15。
1、首先生成一个自变量和一个因变量。
2、点击Statistics|linear model and related|linear菜单。
3、在弹出的regress中设置相关变量,然后再点确定。
4、在结果界面中,_cons为.5205279表示回归截距,说明回归方程具有统计学意义。
5、在弹出的avplot/avplots中,选择“all variables”,点确定即可。
3. 多元线性回归模型案例分析
零均值假定、同方差和无自相关假定、随机扰动项与解释变量不相关假定、无多重共线假定、正态性假定
4. 多元线性回归模型案例题目
在多元线性回归模型中,回归平方和与总离差平方和的比值,也就是在被解释变量的总变差中能由解释变量所解释的那部分变差的比重,我们称之为多重决定系数,仍用R2表示。
5. 多元线性回归模型案例spss
土壤和植被养分是作物产量的重要影响因素。为探讨土壤和叶片养分元素含量对作物产量的影响,一项研究测定了某区域30个样地的作物产量、土壤pH值、有机质含量(SOM)、碱解氮含量(SAN)、速效磷含量(SAP)和叶片氮含量(STN)及磷含量(STP),部分数据如下:
注:表中数据均为随机生成,不可他用。
该研究想建立变量(pH、SOM、SAN等)与产量之间的回归方程,此时我们可以考虑采用多元线性回归分析。
数据分析
值得注意的是,多元线性回归分析需要数据满足以下4个假设:
(1)需要至少2个自变量,且自变量之间互相独立(本次6个);
(2)因变量为为连续变量(本案例产量为连续变量);
(3)数据具有方差齐性、无异常值和正态分布的特点(检验方法);
(4)自变量间不存在多重共线性。
前2个假设可根据试验设计直接判断;假设(3)的检验在之前的教程中已有呈现,点击“检验方法”即可查看。
关于假设(4)的检验方法如下:
1. 点击 分析 → 回归 → 线性。
2.将pH等自变量选入自变量框,将产量选入因变量框,点击统计。
3.在统计窗口选择共线性诊断,点击继续,然后再主页面点击确定即可。
4.结果判断:在结果中我们关注系数表即可,当VIF值大于等于10时,我们认为变量间存在严重的共线性,当VIF值小于10时,我们认为数据基本符合多元线性分析的假设(4),即不存在多重共线性问题。
因此,本案例数据均满足以上4个假设,可以进行多元线性回归的运算。
SPSS分析步骤
一、准备工作
SPSS软件(我使用的是IBM SPSS Statistics 25 中文版,其实各个版本格局上都是相似的,如果大家需要我的版本可以直接点击(安装包)下载;Excel数据整理。
二、分析数据
1. 点击 分析 → 回归 → 线性
2.将pH等自变量选入自变量框,将产量选入因变量框,点击统计。
3.在统计界面勾选如下选项,点击继续
4.点击主页面的保存,然后在新窗口中勾选如下选项,然后点击继续。
5.点击主页面中的“确定”即可得到分析结果。
6. r语言多元线性回归模型案例
复判定系数
复判定系数及R=1-SSE/SST(其中SSE为残差平方和,SST为总平方和)是用来说明因变量的变动中可以用自变量来解释的比例。它可以反映模型的好坏,但由于随着自变量的增加,SSE只会减少,不会变大,而对给定的一组变量观察值来说SST却总是恒定不变,故变量引进模型只会导致R增大而不会缩小,这极易使人产生错觉,似乎自变量越多越好。其结果是过多引进一些效率不高的自变量。而统计量1-((n-1)/(n-p-1)(SSE/SST))称为调整的复判定系数,当自变量增加,SSE减小时,其自由度n-p-1就变小,这样调整的复判定系数就不会象R那样自变量越多越大,从而可能避免引进过多的不必要的自变量,使自变量的选择更合理 。
7. 多元线性回归模型案例eviews
用eviews计算,看各参数的T检验及F检验是否通过,如果F检验通过,但是有两个以上T检验不通过,就有很大的可能是多重共线性了.还有就是看模型中所用的变量之间会不会明显相关,就像,货币供应量和工资之类的.可以尝试直接联立两个变量的方差,看变量间的R平方是不是很接近1,越接近1,说明多重共线性越明显.希望对你有用
8. 多元线性回归模型案例分析论文
逐步回归分析是多元回归分析中的一种方法。回归分析是用于研究多个变量之间相互依赖的关系,而逐步回归分析往往用于建立最优或合适的回归模型,从而更加深入地研究变量之间的依赖关系。
逐步回归法作为建立最优线性回归模型的一种方法,在经济研究中也得到广泛的应用,尤其是在经济建模与预测中。
因为逐步回归法简单易行,所得的回归方程的变量较少,并保留了影响最显著的重要变量,而且在实践中这种方法也被证明较为有效,预测精确度较高;同时经济变量之间往往存在相互关系,即经济变量可能存在多重共线性,而逐步回归在一定程度上可以修正多重共线性。
9. 多元线性回归模型案例matlab
拟合外推就是将一个数据集上建立的模型应用到另一个数据集上,可以先用matlab回归函数建立前一数据集的线性关系模型,然后将此模型应用到后一数据集上进行预测,便可实现拟合外推
10. 多元线性回归模型案例有哪些
1、优点
1、在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。
2、在多元线性回归分析是多元回归分析中最基础、最简单的一种。
3、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果。
2、缺点
有时候在回归分析中,选用何种因子和该因子采用何种表达 式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些 情况下受到限制。
也可以用spss软件进行分析,做出图形,直观方便。
- 相关评论
- 我要评论
-