Excel表格网

excel多元线性回归模型(excel多元线性回归模型检验)

来源:www.0djx.com  时间:2022-10-09 00:15   点击:98  编辑:表格网  手机版

1. excel多元线性回归模型检验

1、首先要准备好两组数据做为x和y,这组数据在可以简单感觉一下是否具有线性关系。将准备好的数据放入excel表格里面

2、EXCEL需要我们自己启用数据分析,点击文件,选择选项,点击左侧的加载项,加载分析工具

3、加载工具完成以后,点击数据中的“工具分析”,选择“回归”,点击确定

4、点击Y值输入区域后面的单元格选择工具,选择Y值单元格,比如小编这里的A2:A20,X值同理操作,这里选择B2:B20,勾选下方的线性拟合图,我们可以看一下拟合的效果

5、excel会在新的工作表里面输出回归分析的相关结果,比如相关系数R^2,标准误差,在X-variable和Intercept两项的值可以写出一元回归方程

2. 多元线性回归分析Excel

点击空白的单元格切除回归公式

3. excel多元线性回归分析案例

如何用excel做线性回归方程

1.

根据已知的x、y值做回归方程;

2.

选中x、y值的数据区,点击“插入”—“折线图”—“二维折线图”;

3.

生成了一幅二维折线图;

4.

鼠标右键单击折线,选择“添加趋势线”。

4. excel多元线性回归模型求解

输入:数据要按照列的方式输入到Excel中(模块函数要求);残差:根据数据分析需要,自主选择是否输出残差、标准残差、残差图和线性拟合图;正态分布:输出正态概率表和图,用来验证数据的正态性。输出结果计算结果输出表格和图表:回归统计,方差分析、假设检验结果、残差结果(残差图)和正态概率表(正态概率图)。

R Square:多元决定系数或拟合优度;Adjusted R Square:修正的多元决定系数;Multiple R:是R Square的正平方根,称为复合相关系数。

5. 用Excel进行多元线性回归分析

使用Excel求解回归方程;依次点击“工具”→“数据分析”→“回归”,线性回归的步骤不论是一元还是多元相同,具体步骤有六步如下所示:

1、散点图判断变量关系(简单线性);

2、求相关系数及线性验证;

3、求回归系数,建立回归方程;

4、回归方程检验;

5、参数的区间估计;

6、预测;

 

6. 多元线性回归分析excel模型步骤

1.首先,我们打开一个excel文档,选择数据作为演示用。

2.选中要分析的数据之后,点击“插入”,选择“散点图”,并选择一种散点图类型。

3.在选项框中,趋势线选择“线性”,然后勾选“显示公式”和“显示R平方值”,点击“关闭”。

4.此时,图中就可以看到线性相关系数R的平方为0.9924了,我们对它开根号就能得到相关系数。

7. 如何利用excel进行多元线性回归分析

打开EXCEL,建立所需要的数据表格。点击“插入”,选择“图表”。在里面点击折线图,选择一种所需要的样式,点击“下一步”。进入“源数据”,在数据区域点击右边那个图标,将整个X轴数据用鼠标选定。点击上面的“系列”,进入系列。 “名称”就用纵坐标名称,下面的“值”选定相应的纵坐标。然后最下面的“分类(X)轴标志(T)再次选定X轴数据即可。然后点击”完成“即可。折线图就完成了,当然如果要调整可以在上一步骤中点击”下一步“进行各种调整。 在电脑上,只需要输入数据,就能画出近拟的直线,给出方程。

1. 在wps表格中输入数据,选择插入-图表。

2. 选择散点图,然后选择好,填入自己需要的横纵坐标,标题之类。

3. 完成插入图表,在界面上出现散点图。对着散点右击,选择“添加趋势线”。

4. 可以选择线性,此时界面中会出现一天近拟的直线。

5. 同时在“选项”一栏中,还可添加方程和R平方值。

8. 多元线性回归模型Excel

SPSS进行多元线性回归分析如下

第一,生成文件导入数据

1、创建一个工作表,然后在工作簿中插入分析数据

2、打开SPSS分析工具,点击文件--->导入数据--->Excel,查找excel文件

3、选择已创建好数据的excel文件,然后点击打开

4、将Excel数据全部导入到SPSS数据编辑器中,查看数据

第二,多元线性回归分析

1、接着依次操作,分析--->回归--->线性

2、打开线性回归窗口,将甲类移到变量框中,几个变量移到自变量

3、单击窗口中右侧的统计按钮,打开线性回归:统计窗口,回归系数选估算值,然后勾选模型拟合

4、点击图按钮,打开图窗口并设置Y和X对应的指标值

5、单击选项按钮,步进法条件选择使用F的概率,设置进入和除去值

6、在选项变量右侧规则,打开设置规则窗口,设置不等于600

第三,生成分析图表结果

1、设置完毕后,点击确定按钮;在输出界面中,显示回归数据集、输入/除去的变量

2、往下移动屏幕,可以查看到模型摘要和ANOVA表格数据

3、最后生成系数和残差统计数据表格,比对不同指标

9. 多元线性回归分析excel

1、在“数据”选项下的“数据分析”中,选择“回归”;

2、在“回归”中,选择y值输入区域为a2:a7,x值输入区域为b2:d7,勾选默认的置信度95%,输出选项中的输出区域选择当前表格的f1单元格,确定;

3、f3:g8是“回归统计表”,f10:k14为“方差分析表”,f16:n20为回归参数表;

4、由回归统计表可以看出,数据之间的相关程度不大,相关性不明显,根据回归参数表,得到多元线性回归方程为y=-43.8823+0.49046*x_1+0.358891*x_2+0.495528*x_3

10. 多元线性回归模型excel案例

吸附曲线图(吸附时间-吸附量图)判断吸附是否饱和;

吸附等温线通常下有三种:

1.线性等温方程:Qe=k*Ce+a,

2.Langmuir等温方程:Ce/Qe=1/(Qm*Kl)+Ce/Qm;Qm为单层饱和吸附量;Kl为吸附平衡常数;

3.Freundlich等温方程:InQe=InKf+(1/n)InCe,式中Kf、n为Freundlich常数,与吸附剂、吸附质种类及温度有关。

分别用线性、Langmuir及Freundlich等温方程对实验数据进行拟合;找到与实验结果符合的等温方程;

再运用吉布斯方程ΔG0=-R*T*InKf可算出不同温度下的 ΔG0, ;由In(K2/K1)=-ΔH0/R(1/T2-1/T1)和ΔG0=ΔH0-TΔS0 得到InKf=-ΔH0/RT+ΔS0 /R(式中:ΔG为吸附的标准自由能变,ΔH为标准吸附热,ΔS为吸附的标准熵变,R为气体摩尔常数,T 为绝对温度,Kf为吸附热力学平衡常数。)以lnKf对1/T作图,得一线性回归方程,从回归方程的斜率和截距求得ΔH0和ΔS0。

11. 如何对多元线性回归模型进行检验

多元线性回归中自变量筛选常用的方法有哪些

1.多元线性回归模型

4.2.1

其中X1、X2、……Xm为m个自变量(即影响因素);β0、β1、β2、……βm为m+1个总体回归参数(也称为回归系数);ε为随机误差。

当研究者通过试验获得了(X1,X2,…,Xm,Y)的n组样本值后,运用最小平方法便可求出式4.2.1中各总体回归参数的估计值b0、b1、b2、……bm,于是,多元线性回归模型4.2.1变成了多元线性回归方程式4.2.2。

(4.2.2)

2.回归分析的任务

多元回归分析的任务就是用数理统计方法估计出式4.2.2中各回归参数的值及其标准误差;对各回归参数和整个回归方程作假设检验;对各回归变量(即自变量)的作用大小作出评价;并利用已求得的回归方程对因变量进行预测、对自变量进行控制等等。

3.标准回归系数及其意义

对回归系数作检验可直接用式(4.2.2)中的bi及其标准误差所提供的信息;但要想对各回归系数之间进行比较就不那么方便了,因为各bi的值受各变量单位的影响。为便于比较,需要求出标准化回归系数,消除仅由单位不同所带来的差别。

设∶与一般回归系数bi对应的标准化回归系数为Bi,则

(4.2.3)

式(4.2.3)中的SXi、SY分别为自变量Xi和Y的标准差。

值得注意的是∶一般认为标准化回归系数的绝对值越大,所对应的自变量对因变量的影响也就越大。但是,当自变量彼此相关时,回归系数受模型中其他自变量的影响,若遇到这种情况,解释标准化回归系数时必须采取谨慎的态度。当然,更为妥善的办法是通过回归诊断(The Diagnosis of Regression),了解哪些自变量之间有严重的多重共线性(Multicoll-inearity),从而,舍去其中作用较小的变量,使保留下来的所有自变量之间尽可能互相独立。此时,利用标准化回归系数作出解释,就更为合适了。

4.自变量为定性变量的数量化方法

设某定性变量有k个水平(如ABO血型系统有4个水平),若分别用1、2、…、k代表k个水平的取值,是不够合理的。因为这隐含着承认各等级之间的间隔是相等的,其实质是假定该因素的各水平对因变量的影响作用几乎是相同的。

比较妥当的做法是引入k-1个哑变量(Dummy Variables),每个哑变量取值为0或1。现以ABO血型系统为例,说明产生哑变量的具体方法。

当某人为A型血时,令X1=1、X2=X3=0;当某人为B型血时,令X2=1、X1=X3=0;当某人为AB型血时,令X3=1、X1=X2=0;当某人为O型血时,令X1=X2=X3=0。

这样,当其他自变量取特定值时,X1的回归系数b1度量了E(Y/A型血)-E(Y/O型血)的效应; X2的回归系数b2度量了E(Y/B型血)-E(Y/O型血)的效应; X3的回归系数b3度量了E(Y/AB型血)-E(Y/O型血)的效应。相对于O型血来说,b1、b2、b3之间的差别就较客观地反映了A、B、AB型血之间的差别。

[说明]E(Y/*)代表在“*”所规定的条件下求出因变量Y的期望值(即理论均值)。

5.变量筛选

研究者根据专业知识和经验所选定的全部自变量并非对因变量都是有显著性影响的,故筛选变量是回归分析中不可回避的问题。然而,筛选变量的方法很多,详见本章第3节,这里先介绍最常用的一种变量筛选法──逐步筛选法。

模型中的变量从无到有,根据F统计量按SLENTRY的值(选变量进入方程的显著性水平)决定该变量是否入选;当模型选入变量后,再根据F统计量按SLSTAY的值(将方程中的变量剔除出去的显著性水平)剔除各不显著的变量,依次类推。这样直到没有变量可入选,也没有变量可剔除或入选变量就是刚剔除的变量,则停止逐步筛选过程。在SAS软件中运用此法的关键语句的写法是∶

MODEL Y = 一系列的自变量 / SELECTION=STEPWISE SLE=p1 SLS=p2;

具体应用时,p1、p2应分别取0~1之间的某个数值。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片