1. 数据挖掘关联规则例子
数据挖掘是从海量信息中进行搜索提取有价值信息的过程,是一个由处理数据、得到信息、挖掘知识等环节组成的工作过程,在这个过程中可能用到机器学习等各种算法,最终的目的是进行智能决策,而这个智能也可以理解为人工智能。比如说通过挖掘历史的销售数据找到商品之间的关联规则,大家熟知的啤酒尿布的故事就是一个典型案例。
模式识别
要想知道什么叫做模式识别,那就要先了解什么叫做模式,通常意义上,模式指用来说明事物结构的一种表达。它是从生产生活经验中经过抽象提炼出来的知识,说直白点就是可以用来表示事物的一些列特征的集合。
模式识别从十九世纪五十年代兴起,在二十世纪七八十年代风靡一时,是信息科学和人工智能的重要组成部分,主要被应用于图像分析与处理、语音识别、计算机辅助诊断、数据挖掘等方面。但是其效果似乎总是差强人意,因为模式识别中的事物特征是由人类设计总结的、主要基于人类在某一方面的领域知识,也就是说模式识别的效果不可能超过人类、有很大的局限性。
2. 数据挖掘中关联规则的主要作用
类关联规则实际上就是用关联规则做的分类器。全名叫Class Based Association Rule,简称CBA,不要和中国男篮搞混了。假设你的训练数据是一张表格,每行代表对一个物体的描述,每列代表物体某个属性的值,其中最后一列是物体的类别编号(其实就是分类问题的训练数据)CBA的经典执行方法为:1. 离散化该表格,针对每个连续属性,将其定义域分割成若干个区间,用数据所在的区间来代替原数据。2. 对表格中出现过的每个属性的每个不同离散值赋予一个独一无二的整数编号。这样就成功把表格变成了挖掘经典关联规则所用的事务数据集。3. 用关联规则挖掘算法从转换后的数据中挖掘关联规则。4. 将那些后件中不包含类别信息的规则删除。执行到这里,我们就获得了一些分类用的分类规则了,此时,若出现了一条不包含类别信息的新数据,就可以将该数据和规则库中的所有规则前件加以匹配,找出最符合的规则输出类别,就完成了分类。前件匹配的优先级(仅仅是建议,具体还是要根据实践调整)1. 前件与新数据的汉明距离,当然新数据也必须用同样的方法离散化。越小越好2. 置信度越大越好3. 支持度越大越好4. 提升度,即前件出现的情况下,后件出现的概率与后件通常情况下出现概率的比值,越大越好当然,经过许多年的学术研究,CBA的算法早已汗牛充栋,具体可在谷歌学术中搜索Class based association rule,国内的话可以用镜像“glgoo学术”。CBA的优点是分类逻辑极其明确,不像许多其他分类器跟炼丹似的,完全不知道为什么work。而且,有研究显示,CBA的分类精度很高。缺点是太屌丝(因为挖规则,通过规则匹配来分类太容易懂,不怎么高大上),不容易忽悠个别好大喜功的老板。总的来说,核心技术就是数据转换+关联规则挖掘+规则匹配我在我的github上分享了一些用c++写的Python2.7包,做关联规则用的。欢迎使用。https://github.com/DMDarkness/Data-mining
3. 浅谈数据挖掘中的关联规则挖掘
在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关数据挖掘联规则中,对数据的多层性已经进行了充分的考虑
关联规则挖掘可以让我们从数据集中发现项与项(item 与 item)之间的关系,它在我们的生活中有很多应用场景,“购物篮分析”就是一个常见的场景,这个场景可以从消费者交易记录中发掘商品与商品之间的关联关系,进而通过商品捆绑销售或者相关推荐的方式带来更多的销售量。所以说,关联规则挖掘是个非常有用的技术。
关联规则是反映一个事物与其他事物之间的相互依存性和关联性,常用于实体商店或在线电商的推荐系统:通过对顾客的购买记录数据库进行关联规则挖掘,最终目的是发现顾客群体的购买习惯的内在共性,例如购买产品A的同时也连带购买产品B的概率,根据挖掘结果,调整货架的布局陈列、设计促销组合方案,实现销量的提升,最经典的应用案例莫过于<啤酒和尿布>。
关联分析又称关联挖掘,就是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式、关联、相关性或因果结构。能从大量数据中发现项集之间有趣的关联和相关联系。关联分析的一个典型例子是购物篮分析。该过程通过发现顾客放人其购物篮中的不同商品之间的联系,分析顾客的购买习惯。通过了解哪些商品频繁地被顾客同时购买,这种关联的发现可以帮助零售商制定营销策略。其他的应用还包括价目表设计、商品促销、商品的排放和基于购买模式的顾客划分。
可从数据库中关联分析出形如“由于某些事件的发生而引起另外一些事件的发生”之类的规则。如“67%的顾客在购买啤酒的同时也会购买尿布”,因此通过合理的啤酒和尿布的货架摆放或捆绑销售可提高超市的服务质量和效益。又如“C语言课程优秀的同学,在学习‘数据结构’时为优秀的可能性达88%”,那么就可以通过强化“C语言”的学习来提高教学效果。
4. 数据挖掘分析 关联规则算法
大多数关联规则挖掘算法通常采用的一种策略是,将关联规则挖掘任务分解为如下两个主要的子任务:
频繁项集产生(Frequent Itemset Generation)
其目标是发现满足最小支持度阈值的所有项集,这些项集称作频繁项集。
规则的产生(Rule Generation)
其目标是从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则。
关联分析的目标
发现频繁项集;
由频繁项集产生强关联规则,这些规则必须大于或等于最小支持度和最小置信度。
5. 数据集关联规则的挖掘
数据挖掘得概念,关键技术及应用 数据挖掘的分类方法、概念、关键技术、图形图像得应用 数据挖掘的关联规则、概念、算法(以两种算法规则为例)归纳算法过程
6. 关联规则数据挖掘的基本原理
关联规则的本质,其实就是挖掘频繁项,那么算法的目的也就是尽可能快速有效的挖掘不同事物间 关系出现的频率。
7. 数据挖掘关联规则例子有哪些
数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。是一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。
它是数据库知识发现(英语:Knowledge-Discoveryin Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。主要有数据准备、规律寻找和规律表示3个步骤。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。
8. 数据挖掘关联规则例子图片
数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统和模式识别等诸多方法来实现上述目标。
人们迫切希望能对海量数据进行深入分析,发现并提取隐藏在其中的信息,以更好地利用这些数据,正是在这样的条件下,数据挖掘技术应运而生。
数据挖掘有很多合法的用途,例如可以在患者群的数据库中查出某药物和其副作用的关系。这种关系可能在1000人中也不会出现一例,但药物学相关的项目就可以运用此方法减少对药物有不良反应的病人数量,还有可能挽救生命。
扩展资料
目前数据挖掘的算法主要包括神经网络法、决策树法、遗传算法、粗糙集法、模糊集法、关联规则法等。
根据信息存储格式,用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及internet等。
数据挖掘过程是一个反复循环的过程,每一个步骤如果没有达到预期目标,都需要回到前面的步骤,重新调整并执行。不是每件数据挖掘的工作都需要这里列出的每一步。
9. 数据挖掘关联分析方法
1.数据挖掘竞赛是指:从海量数据中找到有意义的模式或知识的一类专业竞赛。
2.数据挖掘竞赛涉及到很多的算法,有源于机器学习的神经网络,决策树,也有基于统计学习理论的支持向量机,分类回归树,和关联分析的诸多算法。
3.数据挖掘竞赛内容就是:反复做数据观察, 反复增剪特征(需要领域知识和运气), 反复尝试各种各种模型,要进行各种各样的尝试,发掘有益数据和知识。所以工程代码量会很大。
随着人工智能的发展,越来越多的公司开始举办数据挖掘竞赛比赛,题目类型也越来越丰富。
- 相关评论
- 我要评论
-