Exce表格网

excel提取单数行列(行列式中提取一个数)

来源:www.0djx.com  时间:2022-12-26 15:40   点击:224  编辑:表格网  手机版

1. 行列式中提取一个数

1、证明:如果行a和行b成比例k,则a-kb=0,把b乘以-k倍加到a上,则a行变成0行,行列式如果有零行当然值为0。由已知性质,交换行列式的两行,行列式的值变号可知,若行列式中有两行对应元素相同,则此行列式的值为零。

2、解释:行列式中,有个性质,任何两行(或两列)对换位置,新行列式的值为原行列式值的相反数。所以由这个性质就得到了,行列式有两行(或两列)相同,那么这个行列式的值就是0,因为这两个相同的行(或列)对换位置后,行列式不变。这说明这个行列式的相反数等于自己,所以值就是0那么如果两行(或两列)成比例,将比例提取出来后,剩下的行列式就是两行(或两列)相同的行列式了,那么行列式的值就是0。扩展资料1、行列式A中某行(或列)用同一数k乘,其结果等于kA。2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

2. 取行列式怎么算

四阶行列式的计算方法:

第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化为

1 2 3 4

1 3 4 1

1 4 1 2

1 1 2 3

第2步:第1行乘 -1 加到其余各行,得

1 2 3 4

0 1 1 -3

0 2 -2 -2

0 -1 -1 -1

第3步:r3 - 2r1,r4+r1,得

1 2 3 4

0 1 1 -3

0 0 -4 4

0 0 0 -4

所以行列式 = 10* (-4)*(-4) = 160。

扩展资料

四阶行列式的性质

1、在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

3、四阶行列式由排成n阶方阵形式的n²个数aij(i,j=1,2,...,n)确定的一个数,其值为n。

4、四阶行列式中k1,k2,...,kn是将序列1,2,...,n的元素次序交换k次所得到的一个序列,Σ号表示对k1,k2,...,kn取遍1,2,...,n的一切排列求和,那么数D称为n阶方阵相应的行列式。

3. 行列式的提取

根据行列式运算法则,在化简行列式时,可提取某行(或某列)的公因数(或公因式)作为行列式系数中的一个因数而行列式值是不变的。

4. 行列式怎么提一个数出来

行列式转置即将原矩阵的行变成列、列变成行。

1、行列式在基本行变换或基本列变换下是不变的或变符号,而任何一个矩阵者可通过对角阵都可通过一系列基本行变换或或一系列有基本列变换得到,两种方式互为转置,行列式自然相等。

2、在复向量空间上经常用到半双线性形式来替代双线性形式,在这种空间之间的映射的转置可类似的定义转置映射的矩阵由共轭转置矩阵给出,如果基是正交的在这种情况下转置也叫作埃尔米特伴随,如果V和W没有双线性形式则线性映射fV→W的转置只能定义为在对偶空间W和V之间的线性映射tf W*→V*。

3、行列式A中某行(或列)用同一数k乘其结果等于kA,行列式A等于其转置行列式AT(AT的第i行为A的第i列),若n阶行列式|αij|中某行(或列),行列式则|αij|是两个行列式的和这两个行列式的第i行(或列)一个是b1,b2...bn,另一个是с1,с2…сn,其余各行(或列)上的元与|αij|的完全一样。

5. 一个行列式再取行列式

是指矩阵两边取行列式。

6. 行列式某一行提取一个数

根据行列式的基本性质将所有行的元素都加到任意一行。出现行列式的行,全部的列的元素都相加的结果是一样的时候,我们要将所有行或所有列加到一起。

7. 从行列式中提取一个常数

行列式里面的数,有的是已经给出的数字是常数项,有的是字母表示未知数

8. 行列式中提取一个数是每个都提吗

行列式与它的转置行列式相等。交换行列式的两行,行列式取相反数。行列式的某一行的所有元素都乘以同一数k,等于用数k乘此行列式。行列式如果有两行元素成比例,则此行列式等于零。若行列式的某一行每一个元素都可以由两个数相加得到,则这个行列式是对应两个行列式的和。把行列式的某一行的各元素乘以同一数然后加到另一行对应的元素上去,行列式不变。

1行列式性质

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。

⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

2行列式运算法则

1、三角形行列式的值,等于对角线元素的乘积。计算时,一般需要多次运算来把行列式转换为上三角型或下三角型。

2、交换行列式中的两行(列),行列式变号。

3、行列式中某行(列)的公因子,可以提出放到行列式之外。

4、行列式的某行乘以a,加到另外一行,行列式不变,常用于消去某些元素。

5、若行列式中,两行(列)完全一样,则行列式为0;可以推论,如果两行(列)成比例,行列式为0。

6、行列式展开:行列式的值,等于其中某一行(列)的每个元素与其代数余子式乘积的和;但若是另一行(列)的元素与本行(列)的代数余子式乘积求和,则其和为0。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片