Exce表格网

数列公式excel(数列公式求和)

来源:www.0djx.com  时间:2022-12-31 15:40   点击:129  编辑:表格网  手机版

1. 数列公式求和

您好,在Excel中进行列求和的方法还是挺多的,例如:

1、对列上的单元格依次累加;

2、使用SUM函数框选整列;

3、框选整列后,使用Alt+=;

其实,方法不在于多,而在于哪种方法更适合自己,更能提供自己的工作效率。即便是您知道了七种方法,您也未必能记得住,也未必能用得全。

2. 数列公式大全表格

没有什么公式,只有经验,要根据每个题目的特征1/n(n+1)=1/n-1/(n+1)不是缩放法,是等式1/n(n+1)可缩小到1/(n+1)²扩大到1/n²

3. 数列公式大全图片

六大模型有1.观察归纳法

2.运用数列的通项与其前n项和之间的关系法:(就是an=s(n+1)-sn)

3.构造新数列法:通过待定系数法设a(n+1)+x=c(an+x),构造出一个新的等比数列({an+x }),从而求出通项.(你讲的是这个?) 4.可通过把已知条件式取倒数(这种用得少 我基本上就没用到过 了解下) 5.累加法 累乘法 6.计算、猜想结合数学归纳法证明法:(要用数学归纳法证明的 有点麻烦)

4. 数列公式 高中数学

排列组合的合数公式就是(等差数列求和公式:和= (首项十末项)X项数÷2

5. 数列公式大全

等差数列的通项公式为:an=a1+(n-1)d 或an=am+(n-m)

d 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/

2 若m+n=p+q则:存在am+an=ap+aq 若m+n=2p则:am+an=2ap 以上n均为正整数 文字翻译 第n项的值=首项+(项数-1)*公差 前n项的和=(首项+末项)*项数/

2 公差=后项-前项

6. 数列公式百科

Sn=n*a1+n(n-1)d/2

等差数列公式

等差数列前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。等差数列{an}的通项公式为:an=a1+(n-1)d。

等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列求和公式有

①等差数列公式an=a1+(n-1)d、

②前n项和公式为:Sn=na1+n(n-1)d/2、

③若公差d=1时:Sn=(a1+an)n/2、

④若m+n=p+q则:存在am+an=ap+aq、

⑤若m+n=2p则:am+an=2ap,以上n均为正整数。

等差数列求和公式有几种写法

Sn=n(a1+an)/2

Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n

通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。

等差数列的公式

公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);

项数=(末项-首项来)÷公差+1;

末项=首项+(项数-1)×公差;

前n项的和Sn=首项×n+项数(项数-1)公差/2;

第n项的值an=首项+(项数-1)×公差;

等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列;

等差数列的和=(首项+末项)×项数÷2;

an=am+(n-m)d,若已知某一项am,可列出与d有关的式子求解an。

等比数列

An+1/An=q,n为自然数.

通项公式

An=A1*q^(n-1);

推广式

An=Am·q^(n-m);

求和公式

Sn=nA1(q=1)

Sn=[A1(1-q)^n]/(1-q)

性质

①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;

②在等比数列中,依次每 k项之和仍成等比数列.

“G是a、b的等比中项”“G^2=ab(G≠0)”.

在等比数列中,首项A1与公比q都不为零.

注意:上述公式中A^n表示A的n次方.

对于一个数列 {an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比 q ;从第一项a1 到第n项an 的总和,记为Tn 。

那么, 通项公式为 (即a1 乘以q 的 (n-1)次方,其推导为“连乘原理”的思想:a2=a1 * q,

a3= a2 * q,

a4= a3 * q,

an=an-1 * q,

将以上(n-1)项相乘,左右消去相应项后,左边余下an , 右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。

此外, 当q=1时 该数列的前n项和:Sn=nA1(q=1)

当q≠1时 该数列前n 项的和:Sn=[A1(1-q)^n]/(1-q)

7. 数列公式前n项和

an = a1.q^(n-1)

Sn = a1+a2+...+an

= a1( 1+ q+q^2+...+q^n)

= a1( 1- q^n) /(1-q)

Note: (1-q)( 1+ q+q^2+...+q^n) = 1-q^n

|q|

S(∞)

= lim(n->∞) Sn

= lim(n->∞) a1( 1- q^n) /(1-q)

=a1/(1-q)

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片