Exce表格网

excel灰色预测模型(灰色模型是怎么预测的结果的)

来源:www.0djx.com  时间:2023-01-05 16:40   点击:291  编辑:表格网  手机版

1. 灰色模型是怎么预测的结果的

进行灰色预测,首先要鉴别系统因素之间发展趋势的相异程度,即进行关联分析,再对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型来预测事物未来发展趋势的状况。

在建立灰色预测模型之前,需先对原始时间序列进行数据处理是为了弱化原始时间序列的随机性。灰色系统常用的数据处理方式有累加和累减两种。

2. 灰色预测模型的基本原理

灰色预测法的优点弊,

预测法是一种对含有不确定因素的系统进行预测的方法 。它通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。它用等时间距离观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或者达到某一特征量的时间。优点:对于不确定因素的复杂系统预测效果较好,且所需样本数据较小。缺点:基于指数率的预测没有考虑系统的随机性,中长期预测精度较差。

3. 灰色预测模型及实例分析

这个文档很详细了,你可以看了以后代入自己的数值再计算。

4. 灰色预测模型需要多少数据

灰色预测模型可针对数量非常少(比如仅4个),数据完整性和可靠性较低的数据序列进行有效预测,其利用微分方程来充分挖掘数据的本质,建模所需信息少,精度较高,运算简便,易于检验,也不用考虑分布规律或变化趋势等。

但灰色预测模型一般只适用于短期预测,只适合指数增长的预测,比如人口数量,航班数量,用水量预测,工业产值预测等。

灰色预测模型有很多,GM(1,1)模型使用最为广泛。

5. 灰色预测模型怎么做

因为是基础数字模型组成的所以是一阶

6. 灰色模型是怎么预测的结果的图片

进行灰色预测,首先要鉴别系统因素之间发展趋势的相异程度,即进行关联分析,再对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型来预测事物未来发展趋势的状况。

在建立灰色预测模型之前,需先对原始时间序列进行数据处理是为了弱化原始时间序列的随机性。灰色系统常用的数据处理方式有累加和累减两种。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片