零点教学网(www.0djx.com)-学电脑,学软件,学编程,学网站,学设计!

获取Pytorch中间某一层权重或者特征

零点教学网 Python教程 2020-09-24 00:38:18 6
获取Pytorch中间某一层权重或者特征

问题:训练好的网络模型想知道中间某一层的权重或者看看中间某一层的特征,如何处理呢?

1.获取某一层权重,并保存到excel中;

以resnet18为例说明:

import torch
import pandas as pd
import numpy as np
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
parm={}
for name,parameters in resnet18.named_parameters():
 print(name, : ,parameters.size())
 parm[name]=parameters.detach().numpy()

上述代码将每个模块参数存入parm字典中,parameters.detach().numpy()将tensor类型变量转换成numpy array形式,方便后续存储到表格中.输出为:

conv1.weight : torch.Size([64, 3, 7, 7])
bn1.weight : torch.Size([64])
bn1.bias : torch.Size([64])
layer1.0.conv1.weight : torch.Size([64, 64, 3, 3])
layer1.0.bn1.weight : torch.Size([64])
layer1.0.bn1.bias : torch.Size([64])
layer1.0.conv2.weight : torch.Size([64, 64, 3, 3])
layer1.0.bn2.weight : torch.Size([64])
layer1.0.bn2.bias : torch.Size([64])
layer1.1.conv1.weight : torch.Size([64, 64, 3, 3])
layer1.1.bn1.weight : torch.Size([64])
layer1.1.bn1.bias : torch.Size([64])
layer1.1.conv2.weight : torch.Size([64, 64, 3, 3])
layer1.1.bn2.weight : torch.Size([64])
layer1.1.bn2.bias : torch.Size([64])
layer2.0.conv1.weight : torch.Size([128, 64, 3, 3])
layer2.0.bn1.weight : torch.Size([128])
layer2.0.bn1.bias : torch.Size([128])
layer2.0.conv2.weight : torch.Size([128, 128, 3, 3])
layer2.0.bn2.weight : torch.Size([128])
layer2.0.bn2.bias : torch.Size([128])
layer2.0.downsample.0.weight : torch.Size([128, 64, 1, 1])
layer2.0.downsample.1.weight : torch.Size([128])
layer2.0.downsample.1.bias : torch.Size([128])
layer2.1.conv1.weight : torch.Size([128, 128, 3, 3])
layer2.1.bn1.weight : torch.Size([128])
layer2.1.bn1.bias : torch.Size([128])
layer2.1.conv2.weight : torch.Size([128, 128, 3, 3])
layer2.1.bn2.weight : torch.Size([128])
layer2.1.bn2.bias : torch.Size([128])
layer3.0.conv1.weight : torch.Size([256, 128, 3, 3])
layer3.0.bn1.weight : torch.Size([256])
layer3.0.bn1.bias : torch.Size([256])
layer3.0.conv2.weight : torch.Size([256, 256, 3, 3])
layer3.0.bn2.weight : torch.Size([256])
layer3.0.bn2.bias : torch.Size([256])
layer3.0.downsample.0.weight : torch.Size([256, 128, 1, 1])
layer3.0.downsample.1.weight : torch.Size([256])
layer3.0.downsample.1.bias : torch.Size([256])
layer3.1.conv1.weight : torch.Size([256, 256, 3, 3])
layer3.1.bn1.weight : torch.Size([256])
layer3.1.bn1.bias : torch.Size([256])
layer3.1.conv2.weight : torch.Size([256, 256, 3, 3])
layer3.1.bn2.weight : torch.Size([256])
layer3.1.bn2.bias : torch.Size([256])
layer4.0.conv1.weight : torch.Size([512, 256, 3, 3])
layer4.0.bn1.weight : torch.Size([512])
layer4.0.bn1.bias : torch.Size([512])
layer4.0.conv2.weight : torch.Size([512, 512, 3, 3])
layer4.0.bn2.weight : torch.Size([512])
layer4.0.bn2.bias : torch.Size([512])
layer4.0.downsample.0.weight : torch.Size([512, 256, 1, 1])
layer4.0.downsample.1.weight : torch.Size([512])
layer4.0.downsample.1.bias : torch.Size([512])
layer4.1.conv1.weight : torch.Size([512, 512, 3, 3])
layer4.1.bn1.weight : torch.Size([512])
layer4.1.bn1.bias : torch.Size([512])
layer4.1.conv2.weight : torch.Size([512, 512, 3, 3])
layer4.1.bn2.weight : torch.Size([512])
layer4.1.bn2.bias : torch.Size([512])
fc.weight : torch.Size([1000, 512])
fc.bias : torch.Size([1000])
parm[ layer1.0.conv1.weight ][0,0,:,:]

输出为:

array([[ 0.05759342, -0.09511436, -0.02027232],
 [-0.07455588, -0.799308 , -0.21283598],
 [ 0.06557069, -0.09653367, -0.01211061]], dtype=float32)

利用如下函数将某一层的所有参数保存到表格中,数据维持卷积核特征大小,如3*3的卷积保存后还是3x3的.

def parm_to_excel(excel_name,key_name,parm):
 with pd.ExcelWriter(excel_name) as writer:
 [output_num,input_num,filter_size,_]=parm[key_name].size()
 for i in range(output_num):
 for j in range(input_num):
 data=pd.DataFrame(parm[key_name][i,j,:,:].detach().numpy())
 #print(data)
 data.to_excel(writer,index=False,header=True,startrow=i*(filter_size+1),startcol=j*filter_size)

由于权重矩阵中有很多的值非常小,取出固定大小的值,并将全部权重写入excel

counter=1
with pd.ExcelWriter( test1.xlsx ) as writer:
 for key in parm_resnet50.keys():
 data=parm_resnet50[key].reshape(-1,1)
 data=data[data 0.001]
 data=pd.DataFrame(data,columns=[key])
 data.to_excel(writer,index=False,startcol=counter)
 counter+=1
2.获取中间某一层的特性

重写一个函数,将需要输出的层输出即可.

def resnet_cifar(net,input_data):
 x = net.conv1(input_data)
 x = net.bn1(x)
 x = F.relu(x)
 x = net.layer1(x)
 x = net.layer2(x)
 x = net.layer3(x)
 x = net.layer4[0].conv1(x) #这样就提取了layer4第一块的第一个卷积层的输出
 x=x.view(x.shape[0],-1)
 return x
model = models.resnet18()
x = resnet_cifar(model,input_data)


零点教学网,,自学EXCEL、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。

如果以上内容你喜欢,请持续关注:零点教学网软件编程教程栏目

分享:

本文来自投稿,不代表本人立场,如若转载,请注明出处:http://0djx.com/ruanjianbianchengjiaocheng/python/54675.html

  python在大数据的应用   获取Pytorch中间某一层权重或者特征  

(6)
打赏 微信扫一扫
« 上一篇 2020年09月24日 00:38:05
下一篇 » 2020年09月24日 00:38:23

python在大数据的应用_相关内容

获取Pytorch中间某一层权重或者特征_相关内容